UIUC Secure Learning Lab

TSS Transformation-Specific Smoothing for Robustness Certification

Linyi Li*, Maurice Weber*, Xiaojun Xu, Luka Rimanic, Bhavya Kailkhura, Tao Xie, Ce Zhang, Bo Li

Neural Networks are Vulnerable to Adversarial Attacks

- W.l.o.g, consider image classification problem
- Given an image as input, ML model predicts a class label
- However, attacker can usually craft adversarial input:
 - Indistinguishable from original input
 - But fool NN to make wrong prediction

Predicted as "dog"

Szegedy, Christian, et al. "Intriguing properties of neural networks." ArXiv:1312.6199.

Adversarial Attack via Semantic Transformations

- Certifying and improving robustness for ML models against ℓ_p bounded perturbations is well-studied
 - Clean input = x_0
 - Attacker needs to input x s.t. $||x x_0||_p \le \epsilon$
- However, in the real-world, attacker can also apply semantic transformations (e.g., brightness, rotation, scaling) to fool ML models

(b) Input 2 (darker version of 1)

Adversarial examples found on Nvidia DAVE-2 self-driving car platform by DeepXplore

(a) Input 1

Pei, Kexin, et al. "Deepxplore: Automated whitebox testing of deep learning systems." SOSP 2017.

Can we get ML models that are certifiably robust to various semantic transformations?

Certify Robustness against Semantic Transformations

• We propose a **framework for certifying ML robustness** against semantic transformations: TSS

Compared with Existing Work

- Existing certified robustness methods:
 - Too **loose** on small models
 - Too **slow** for large models
 - Too **specific** for certain transformations
- Our work:
 - **Tight**: achieves state-of-the-art certified accuracy
 - **Scalable**: for the first time, achieve certified robustness on ImageNet
 - 30.4% certified accuracy against arbitrary rotation within 30°
 - **General**: general methodology for analyzing and certifying against transformations
 - Support > 10 common transformations:
 - rotation, scaling, brightness, contrast, blur, ...

Threat Model & Certification Goal

Challenges

Our Framework: TSS

Experimental Evaluation

8

Threat Model

- Image classification task:
 - Input space: $\mathcal{X} \subseteq \mathbb{R}^d$
 - Output space: $\mathcal{Y} = \{1, \dots, C\}$
- Semantic transformation as a function $\phi: \mathcal{X} \times \mathcal{Z} \to \mathcal{X}$
 - Parameter space: $\mathcal{Z} \subseteq \mathbb{R}^m$
- Attacker can:
 - 1. arbitrarity choose parameter $\alpha \in \mathbb{Z}$
 - 2. transform *x* to $\phi(x, \alpha)$
 - 3. input $\phi(x, \alpha)$ to the classifier

Example:

- $\phi_R(x, \alpha)$ rotates input image *x* by α degree clockwise
- Define $Z = [-30^{\circ}, 30^{\circ}]$

> Attacker can arbitrarily rotate the image within 30°

Certification Goal

- For our classifier $h: \mathcal{X} \to \mathcal{Y} = \{1, \dots, C\}$
- Given clean input $x \in \mathcal{X}$
- Wish to find a set $\mathcal{S} \subseteq \mathcal{Z}$ such that we can guarantee

 $h(x) = h\big(\phi(x,\alpha)\big), \forall \alpha \in \mathcal{S}$

Threat Model & Certification Goal

Our Framework: TSS

Experimental Evaluation

Real-Valued Parameter Space

- The parameter space is real-valued
- The input image space is real-valued

Infinite possible inputs after transformationCannot certify via enumeration

Large ℓ_p Difference

- Semantic transformation incurs large ℓ_p difference
 - Brightness +10% incurs ℓ_2 difference $0.1 \times \sqrt{\# pixels} \approx 38.7$ on ImageNet
- ≻Cannot certify with existing ℓ_p based methods

Interpolation

- Some transformations like rotation and scaling uses bilinear interpolation
- Certification needs to take complex interpolation effects into account

Threat Model & Certification Goal

Challenges

> Our Framework: TSS

- Generalized Randomized Smoothing
- TSS-R: Certifying Resolvable Transformations
- TSS-DR: Certifying Differentially Resolvable Transformations

Experimental Evaluation

Generalized Randomized Smoothing

- Given an arbitrary base classifier $h: \mathcal{X} \to \mathcal{Y} = \{1, 2, ..., C\}$
- Let $\phi(x, b) = x + b \cdot (1, ..., 1)^T$ be the brightness transformation
- Let $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ be the **smoothing distribution**
- Define $q(y|x;\varepsilon) = \Pr_{\varepsilon}(h(\phi(x,\varepsilon)) = y)$

> q is probability of predicting class y under noise in parameter space

• We construct **smoothed classifier** $g: \mathcal{X} \to \mathcal{Y} = \{1, 2, ..., C\}$:

$$g(x;\varepsilon) = \operatorname{argmax}_{y \in \mathcal{Y}} q(y|x;\varepsilon)$$

> Returns the class with highest q

Smoothness Brings Robustness

Recall $g(x;\varepsilon) = \operatorname{argmax}_{y\in\mathcal{Y}} q(y|x;\varepsilon) = \operatorname{argmax}_{y\in\mathcal{Y}} \Pr(h(\phi(x,\varepsilon)) = y)$

- If for the clean input x_0 , $q(\{\text{panda, monkey, cat}\}|x_0, \varepsilon) = \{0.80, 0.15, 0.05\}$
- Slightly change the brightness by *b*:

 $\varepsilon \sim \mathcal{N}(0,\sigma^2)$ becomes $\varepsilon' \sim \mathcal{N}(b,\sigma^2)$

• Slightly shifting ε mean, $q(\text{panda}|x_0, \varepsilon')$ is still **guaranteed** to be the largest

Credit to Cohen, Jeremy et al. Certified Adversarial Robustness via Randomized Smoothing. ICML 2019

Robustness Guarantee

- p_A : probability of top class (panda)
- p_B : probability of runner-up class (monkey)
- $\varepsilon \sim \mathcal{N}(0, \sigma^2)$: smoothing distribution:

g probably returns the top-class panda as long as brightness change $b \leq \frac{\sigma}{2} (\Phi^{-1}(p_A) - \Phi^{-1}(p_B)),$ where Φ^{-1} is the inverse standard Gaussian CDF

However...

- Guaranteed robustness relies on **overlapped supports** between original and transformed input
- For some transformations, there are overlapped supports (•

- For some transformations, hard to find overlapped supports
 - Smoothing over rotated input = Rotating two times
 - Rotate 15° + rotate 15° ≠ rotate 30°
 - Due to interpolation

Resolvable Transformations vs. Differentially Resolvable Transformations

- Transformation with overlapped supports = resolvable
 - Formally, for any $\alpha \in \mathbb{Z}$, there exists function $\gamma_{\alpha}: \mathbb{Z} \to \mathbb{Z}$, $\phi(\phi(x, \alpha), \beta) = \phi(x, \gamma_{\alpha}(\beta))$
- (**informal*) Transformation without overlapped supports but continuous = differentially resolvable

TSS-R: Certifying Resolvable Transformations

- For resolvable transformations, use our generalized randomized smoothing to smooth and provide robustness certification
 - Brightness, contrast, translation, Gaussian blur, ...

Interesting findings:

- Although Gaussian and uniform smoothing distribution shown best for ℓ_p bounded additive perturbations
- For these low-dimensional transformations, **Exponential distribution** usually performs the best
- Some transformations have constrained parameter space, customized smoothing distributions lead to higher certified robustness for them
 - *E.g.*, Gaussian blur's radius cannot be negative, use exponential or folded Gaussian as smoothing distributions

TSS-DR: Certifying Differentially Resolvable Transformations

- Differentially resolvable transformations may not have overlapped supports → cannot directly apply generalized randomized smoothing
- Luckily, we find
 - Transformations have low-dimensional parameter space
 - *E.g.*, one-dimensional rotation angle
 - \succ Moderate number of samples lead to an ϵ -cover of parameter space
 - (*informal) By definition, they are continuous w.r.t. parameter change
 - *E.g.*, rotated image w.r.t the rotation angle is continuous
 - Preprocessing masks out pixels outside of inscribed circle to improve continuity

Siven Lipschitz *L*, maximum ℓ_2 difference from the nearest sample in ϵ -cover is ϵL

Reduction to Certifying ℓ_2 Robustness

- Solution Moderate number of samples lead to an ϵ -cover of parameter space
- Siven Lipschitz *L*, maximum ℓ_2 difference from the nearest sample in ϵ -cover is ϵL
- If for any sample in ϵ -cover, we can certify an ℓ_2 robust radius $\geq \epsilon L$, then we are done
 - Certify an ℓ_2 robust radius?
 - Apply additive transformation suffices
- Problem to solve: compute the maximum ℓ_2 difference

Interpolation Error

- Given these samples, we now need to figure out the maximum interpolation error
 - i.e., maximum ℓ₂ difference from any transformed image to their nearest samples
- We combine stratified sampling and efficient Lipschitz computation to upper bound such difference

Threat Model & Certification Goal

Challenges

Our Framework: TSS

Experimental Evaluation

Experimental Setup

- Base Classifier Training:
 - We combined consistency-enhanced training [1] with transformationspecific data augmentation to obtain base classifier for smoothing
- Metric: Certified Robust Accuracy
 - The fraction of samples (within the test subset) that are
 - both certified robust and classified correctly
 - under any attack whose parameter is within predefined range

Set-of-the-art Certified Robustness

Transformation	Туре	Dataset	Attack Radius		Certified Robust Accuracy				
				TSS	DeepG [2]	Interval [47]	VeriVis [39]	Semanify-NN [35]	DistSPT [13]
Gaussian Blur	Resolvable	MNIST	Squared Radius $\alpha \leq 36$	90.6%	-	-	-	-	-
		CIFAR-10	Squared Radius $\alpha \leq 16$	63.6%	-	-	-	-	-
		ImageNet	Squared Radius $\alpha \leq 36$	51.6%	-	-	-	-	-
Translation (Reflection Pad.)	Resolvable, Discrete	MNIST	$\sqrt{\Delta x^2 + \Delta y^2} \le 8$	99.6%	-	-	98.8%	98.8%	-
		CIFAR-10	$\sqrt{\Delta x^2 + \Delta y^2} \le 20$	80.8%	-	-	65.0%	65.0%	-
		ImageNet	$\sqrt{\Delta x^2 + \Delta y^2} \le 100$	50.0%	-	-	43.2%	43.2%	-
Brightness	Resolvable	MNIST	$b\pm 50\%$	98.2%	-	-	-	-	-
		CIFAR-10	$b \pm 40\%$	87.0 %	-	-	-	-	-
		ImageNet	$b \pm 40\%$	70.0%	-	-	-	-	-
Contrast and Brightness	Resolvable, Composition	MNIST	$c \pm 50\%, b \pm 50\%$	97.6%	$\leq 0.4\%$ (c, b $\pm 30\%$)	0.0% (c, b ± 30%)	-	$\leq 74\%$ ($c \pm 5\%, b \pm 50\%$)	-
		CIFAR-10	$c\pm40\%,b\pm40\%$	82.4%	0.0% (c, b ± 30%)	0.0% (c, b ± 30%)	-	-	-
		ImageNet	$c \pm 40\%, b \pm 40\%$	61.4%	-	-	-	-	-
Gaussian Blur, Translation, Bright- ness, and Contrast	Resolvable, Composition	MNIST	$\alpha \leq 1, \sqrt{\Delta x^2 + \Delta y^2} \leq 5, c, b \pm 10\%$	90.2%	-	-	-	-	-
		CIFAR-10	$lpha \leq 1, \sqrt{\Delta x^2 + \Delta y^2} \leq 5, c, b \pm 10\%$	58.2%	-	-	-	-	-
		ImageNet	$\alpha \leq 10, \sqrt{\Delta x^2 + \Delta y^2} \leq 10, c, b \pm 20\%$	32.8%	-	-	-	-	-
Rotation Scaling	Differentially Resolvable Differentially Resolvable	MNIST	$r \pm 50^{\circ}$	97.4%	$\leq 85.8\%$ (r ± 30°)	$\leq 6.0\%$ (r ± 30°)	-	≤ 92.48%	82%
		CIFAR-10	$r \pm 10^{\circ}$	70.6%	62.5%	20.2%	-	-	37%
			$r \pm 30^{\circ}$	63.6%	10.6%	0.0%	-	<u>≤ 49.37%</u>	22%
		ImageNet	$r \pm 30^{\circ}$	30.4%	-	-	-	-	16% (rand. attack)
		MNIST	$s \pm 30\%$	97.2%	85.0%	16.4%	-	-	-
		CIFAR-10	$s \pm 30\%$	58.8%	0.0%	0.0%	-	-	-
		ImageNet	s ± 30%	26.4%	-	-	-	-	-
Rotation and Brightness	Differentially Resolvable, Composition	MNIST	$r \pm 50^{\circ}, b \pm 20\%$	97.0%	-	-	-	-	-
		CIFAR-10	$r \pm 10^{\circ}, b \pm 10\%$	70.2%	-	-	-	-	-
		ImagaNat	$r \pm 30^{\circ}, b \pm 20\%$	61.4%	-	-	-	-	-
		Magemet	$F \pm 50^{\circ}, b \pm 20^{\circ}$	20.8%		-	-	-	-
Scaling	Pasalvabla	CIEAD 10	$s \pm 50\%, b \pm 50\%$	90.0%	-	-	-	-	-
Brightness	Composition	ImageNet	$s \pm 30\%, b \pm 30\%$ s + 30%, b + 30%	23 4%		-	-	-	-
		MNIST	$r \pm 50^{\circ} h \pm 20^{\circ} \delta _{-} < 05$	06.607					
Rotation, Brightness, and <i>l</i> ₂	Differentially Resolvable, Composition	10114101	$r \pm 10^{\circ} \ b \pm 10^{\circ} \ \ \delta\ _{2} \le .05$	64.2%	-	-	-	-	-
		CIFAR-10	$r \pm 30^{\circ}, b \pm 20\%, \ \delta\ _2 \le .05$	55.2%	-	-	-	-	-
		ImageNet	$r \pm 30^{\circ}, b \pm 20\%, \ \delta\ _2 \le .05$ $r \pm 30^{\circ}, b \pm 20\%, \ \delta\ _2 \le .05$	26.6%	-	-	-	-	-
Scaling,	Differentially	MNIST	$s \pm 50\% b \pm 50\% \ \delta\ _2 < 05$	96.4%		-	-	-	-
Brightness,	Resolvable, Composition	CIFAR-10	$s \pm 30\%, b \pm 30\%, \ \delta\ _2 < .05$	51.2%	-	-	-	-	-
and ℓ_2		ImageNet	$s \pm 30\%, b \pm 30\%, \ \delta\ _2 \le .05$	22.6%	-	-	-	-	-
	-	0							

Robustness under Existing Attacks

- We study actual robustness under a random attack and an adaptive attack
 - TSS accuracy under attack > TSS certified robust accuracy
 > TSS certification is correct
 - TSS certified robust accuracy >> Standard models' accuracy under attack

➤ TSS certification is meaningful in practice

- Adaptive attack reduces standard models' accuracy more
 - >TSS models provides strong robustness against adaptive attacks
- The gap between accuracy under attack and certified robust accuracy is larger for larger dataset (e.g., ImageNet)

≻ Improvement rooms exist

Other Findings

There are many more transformations in the wild world

- Evaluated on natural corruption datasets CIFAR-10-C and ImageNet-C:
 - TSS models are still better than standard models
 - Sometimes even better than SOTA on CIFAR-10-C and ImageNet-C * Evaluated on the highest level of corruptions
 - Provides strong robustness guarantees against transformation compositions, even on large-scale ImageNet

	CIFAR-10			ImageNet		
	Vanilla	AugMix [21]	TSS	Vanilla	AugMix [21]	TSS
Empirical Accuracy	52 007	65 607	67 107	18.3%	25.7%	21.9%
on CIFAR-10-C and ImageNet-C	55.9%	03.0%	07.4%			
Certified Accuracy against						
Composition of Gaussian Blur,	0.0%	0.4%	58.2%	0.0%	0.0%	32.8%
Translation, Brightness, and Contrast						

Other Findings (Cont.d)

- If the attack's perturbation radius (i.e., rotation angle) beyond the predefined radius used in training...
 - TSS still preserves high certified robust accuracy
 - For model defending 40% brightness change on ImageNet,
 - Certified accuracy against 40% change is 70.4%
 - Certified accuracy against 50% change is 70.0%
- Smoothing variance is a tunable hyperparameter
 - Small smoothing variance \rightarrow high clean accuracy, small certified radius
 - Large smoothing variance \rightarrow low clean accuracy, large certified radius
 - For highest certified accuracy under a given radius, an optimal smoothing variance exists

Conclusion

- **TSS**: a framework for certifying ML robustness against semantic transformations
- Categorize semantic transformations into resolvable (R) and differentiable resolvable (DR)
- Apply TSS-R and TSS-DR respectively
- Achieve significantly higher certified robustness than state-of-the-arts
- **First** work that achieves nontrivial certified robustness on ImageNet
- Achieve high empirical robustness against adaptive attacks and unforseen transformations

Full paper	<u>arxiv.org/abs/2002.12398</u>
Slides	<pre>linyil.com/res/pub/TSS-CCS21-</pre>
	<u>slides.pdf</u>
Code	<pre>github.com/AI-secure/semantic-</pre>
0000	<pre>randomized-smoothing</pre>

