
Transformation-Specific Smoothing
for Robustness Certification

Linyi Li*, Maurice Weber*, Xiaojun Xu, Luka Rimanic, 
Bhavya Kailkhura, Tao Xie, Ce Zhang, Bo Li

TSS

UIUC Secure Learning Lab



Neural Networks are Vulnerable to 
Adversarial Attacks
• W.l.o.g, consider image classification problem

• Given an image as input, ML model predicts a class label
• However, attacker can usually craft adversarial input:

• Indistinguishable from original input
• But fool NN to make wrong prediction
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Szegedy, Christian, et al. "Intriguing properties of neural networks." ArXiv:1312.6199.



Adversarial Attack via Semantic 
Transformations
• Certifying and improving robustness for ML models against ℓ!

bounded perturbations is well-studied
• Clean input = 𝑥!
• Attacker needs to input 𝑥 s.t. 𝑥 − 𝑥! " ≤ 𝜖

• However, in the real-world, attacker can also apply semantic 
transformations (e.g., brightness, rotation, scaling) to fool ML
models

Adversarial examples found on
Nvidia DAVE-2 self-driving car 
platform by DeepXplore

Pei, Kexin, et al. “Deepxplore: Automated whitebox testing of deep learning systems.” SOSP 2017.
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Can we get ML models that are certifiably
robust to various semantic transformations?



Certify Robustness against 
Semantic Transformations
• We propose a framework for certifying ML robustness 

against semantic transformations: TSS
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Compared with Existing Work
• Existing certified robustness methods:
• Too loose on small models
• Too slow for large models
• Too specific for certain transformations

• Our work:
• Tight: achieves state-of-the-art certified accuracy
• Scalable: for the first time, achieve certified robustness on ImageNet

• 30.4% certified accuracy against arbitrary rotation within 30∘

• General: general methodology for analyzing and certifying against 
transformations
• Support > 10 common transformations: 

• rotation, scaling, brightness, contrast, blur, …
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Ø Threat Model & Certification Goal
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Threat Model

• Image classification task:
• Input space: 𝒳 ⊆ ℝ#
• Output space: 𝒴 = {1,… , 𝐶}

• Semantic transformation as a function
𝜙:𝒳 × 𝒵 → 𝒳

• Parameter space: 𝒵 ⊆ ℝ$

• Attacker can: 
1. arbitrarity choose parameter 𝛼 ∈ 𝒵
2. transform 𝑥 to 𝜙(𝑥, 𝛼)
3. input 𝜙(𝑥, 𝛼) to the classifier
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Example:
• 𝜙%(𝑥, 𝛼) rotates input image 
𝑥 by 𝛼 degree clockwise

• Define 𝒵 = [−30∘, 30∘]

ØAttacker can arbitrarily 
rotate the image within 30∘



Certification Goal

• For our classifier ℎ:𝒳 → 𝒴 = {1,… , 𝐶}
• Given clean input 𝑥 ∈ 𝒳
• Wish to find a set 𝒮 ⊆ 𝒵 such that we can guarantee

ℎ 𝑥 = ℎ 𝜙 𝑥, 𝛼 , ∀𝛼 ∈ 𝒮
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Threat Model & Certification Goal
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Real-Valued Parameter Space

• The parameter space is real-valued
• The input image space is real-valued

ØInfinite possible inputs after transformation
ØCannot certify via enumeration
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Large ℓ! Difference

• Semantic transformation incurs large ℓ! difference
• Brightness +10% incurs ℓ' difference 0.1× # 𝑝𝑖𝑥𝑒𝑙𝑠 ≈ 38.7 on 

ImageNet
ØCannot certify with existing ℓ! based methods
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Interpolation

• Some transformations like rotation and scaling uses bilinear 
interpolation
• Certification needs to take complex interpolation effects into 

account 
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• Generalized Randomized Smoothing
• TSS-R: Certifying Resolvable Transformations
• TSS-DR: Certifying Differentially Resolvable Transformations

Threat Model & Certification Goal
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Ø Our Framework: TSS

Experimental Evaluation

Challenges



Generalized Randomized Smoothing

• Given an arbitrary base classifier ℎ:𝒳 → 𝒴 = {1,2, … , 𝐶}
• Let 𝜙 𝑥, 𝑏 = 𝑥 + 𝑏 ⋅ 1, … , 1 $ be the brightness transformation
• Let 𝜀 ∼ 𝒩(0, 𝜎%) be the smoothing distribution
• Define 𝑞 𝑦 𝑥; 𝜀 = Pr

&
ℎ 𝜙 𝑥, 𝜀 = 𝑦

Ø𝑞 is probability of predicting class 𝑦 under noise in parameter space
• We construct smoothed classifier 𝑔:𝒳 → 𝒴 = {1,2, … , 𝐶}:

𝑔 𝑥; 𝜀 = argmax'∈𝒴 𝑞 𝑦 𝑥; 𝜀
ØReturns the class with highest 𝑞

15



Smoothness Brings Robustness
Recall 𝑔 𝑥; 𝜀 = argmax(∈𝒴 𝑞 𝑦 𝑥; 𝜀 = argmax(∈𝒴 Pr+ ℎ 𝜙 𝑥, 𝜀 = 𝑦

• If for the clean input 𝑥!, 𝑞 {panda,monkey, cat} 𝑥!, 𝜀 = {0.80, 0.15, 0.05}
• Slightly change the brightness by 𝑏:

𝜀 ∼ 𝒩(0, 𝜎') becomes 𝜀′ ∼ 𝒩(𝑏, 𝜎')
• Slightly shifting 𝜀 mean,

𝑞 panda 𝑥!, 𝜀′ is still 𝐠𝐮𝐚𝐫𝐚𝐧𝐭𝐞𝐞𝐝 to be the largest

16Credit to Cohen, Jeremy et al. Certified Adversarial Robustness 
via Randomized Smoothing. ICML 2019
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Robustness Guarantee

• 𝑝*: probability of top class (panda)
• 𝑝+: probability of runner-up class (monkey)
• 𝜀 ∼ 𝒩(0, 𝜎%): smoothing distribution:

𝑔 probably returns the top-class panda as long as brightness change
𝑏 ≤

𝜎
2
Φ,- 𝑝* −Φ,- 𝑝+ ,

where Φ,- is the inverse standard Gaussian CDF
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However…
• Guaranteed robustness relies on overlapped supports

between original and transformed input
• For some transformations, there are overlapped supports 
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• For some transformations, hard to find overlapped supports
• Smoothing over rotated input =
Rotating two times
• Rotate 15! + rotate 15! ≠ rotate 30!

• Due to interpolation 



Resolvable Transformations vs.
Differentially Resolvable Transformations
• Transformation with overlapped supports = resolvable
• Formally, for any 𝛼 ∈ 𝒵, there exists function 𝛾.: 𝒵 → 𝒵,

𝜙 𝜙 𝑥, 𝛼 , 𝛽 = 𝜙 𝑥, 𝛾. 𝛽

• (*informal) Transformation without overlapped supports but
continuous = differentially resolvable
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Resolvable 
Transformations

Differentially Resolvable Transformations

Translation Gaussian Blur
Brightness Contrast

Brightness & Contrast

Rotation Scaling

Rotation 
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Other Compositions



TSS-R: Certifying Resolvable
Transformations
• For resolvable transformations, use our generalized randomized 

smoothing to smooth and provide robustness certification
• Brightness, contrast, translation, Gaussian blur, …

Interesting findings:
• Although Gaussian and uniform smoothing distribution shown best for 
ℓ" bounded additive perturbations
• For these low-dimensional transformations, Exponential 

distribution usually performs the best
• Some transformations have constrained parameter space, customized 

smoothing distributions lead to higher certified robustness for them
• E.g., Gaussian blur’s radius cannot be negative, use exponential or folded 

Gaussian as smoothing distributions
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TSS-DR: Certifying Differentially
Resolvable Transformations
• Differentially resolvable transformations may not have 

overlapped supports → cannot directly apply generalized 
randomized smoothing
• Luckily, we find
• Transformations have low-dimensional parameter space

• E.g., one-dimensional rotation angle
ØModerate number of samples lead to an 𝜖-cover of parameter space
• (*informal) By definition, they are continuous w.r.t. parameter change

• E.g., rotated image w.r.t the rotation angle is continuous
• Preprocessing masks out pixels outside of inscribed circle to improve continuity

ØGiven Lipschitz 𝐿, maximum ℓ' difference from the nearest sample in
𝜖-cover is 𝜖𝐿
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Reduction to Certifying ℓ" Robustness

ØModerate number of samples lead to an 𝜖-cover of parameter 
space

ØGiven Lipschitz 𝐿, maximum ℓ% difference from the nearest
sample in 𝜖-cover is 𝜖𝐿
• If for any sample in 𝜖-cover, we can certify an ℓ% robust radius ≥
𝜖𝐿, then we are done

Certify an ℓ' robust radius? 
• Apply additive transformation suffices

• Problem to solve: compute the maximum ℓ% difference
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Interpolation Error
• Given these samples,

we now need to figure
out the maximum
interpolation error
• i.e., maximum ℓ'

difference from any
transformed image to
their nearest samples

• We combine stratified 
sampling and efficient 
Lipschitz computation 
to upper bound such 
difference
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Interval to Certify𝑎 𝑏

𝛼! 𝛼" 𝛼# 𝛼#$! 𝛼%⋯ ⋯ First-Level Sampling𝛼%&!

𝑀! 𝑀# 𝑀%&!
Maximum Interpolation Error 
upper bounds 𝑀𝒮:

𝑀:= max
!(#(%&!

𝑀# ≥ 𝑀𝒮𝛼# 𝛼#$!
Second-Level Sampling

𝑔#(𝛼)

𝑔#$!(𝛼)0

Slope 𝐿

Slope 𝐿

𝛾#,* 𝛾#,*$!

Upper bound for max
!!,#"!"!!,#$%

𝑔#(𝛾)
Upper bound for max

!!,#"!"!!,#$%
𝑔#$%(𝛾)

Bounding 𝐌𝐢 from second-level sampling and Lipschitz constant:
𝑀# = max

%"&"'(%
min{Upper bound for max

!!,#"!"!!,#$%
𝑔#(𝛾) ,Upper bound for max

!!,#"!"!!,#$%
𝑔#$%(𝛾)}

𝛾#,! 𝛾#,,



Threat Model & Certification Goal
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Experimental Setup

• Base Classifier Training:
• We combined consistency-enhanced training [1] with transformation-

specific data augmentation to obtain base classifier for smoothing
• Metric: Certified Robust Accuracy
• The fraction of samples (within the test subset) that are
• both certified robust and classified correctly
• under any attack whose parameter is within predefined range
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[1] Jongheon Jeong and Jinwoo Shin. Consistency Regularization for Certified Robustness of Smoothed Classifiers. NeurIPS 2020



Set-of-the-art
Certified
Robustness
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Robustness under Existing Attacks

• We study actual robustness under a random attack and an 
adaptive attack
• TSS accuracy under attack > TSS certified robust accuracy

ØTSS certification is correct
• TSS certified robust accuracy >> Standard models’ accuracy under 

attack
ØTSS certification is meaningful in practice

• Adaptive attack reduces standard models’ accuracy more
ØTSS models provides strong robustness against adaptive attacks

• The gap between accuracy under attack and certified robust accuracy is 
larger for larger dataset (e.g., ImageNet)
ØImprovement rooms exist
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Other Findings

There are many more transformations in the wild world
• Evaluated on natural corruption datasets CIFAR-10-C and 

ImageNet-C:
• TSS models are still better than standard models
• Sometimes even better than SOTA on CIFAR-10-C and ImageNet-C

* Evaluated on the highest level of corruptions
• Provides strong robustness guarantees against transformation 

compositions, even on large-scale ImageNet
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Other Findings (Cont.d)

• If the attack’s perturbation radius (i.e., rotation angle) beyond 
the predefined radius used in training…
• TSS still preserves high certified robust accuracy
• For model defending 40% brightness change on ImageNet, 

• Certified accuracy against 40% change is 70.4%
• Certified accuracy against 50% change is 70.0%

• Smoothing variance is a tunable hyperparameter
• Small smoothing variance → high clean accuracy, small certified radius
• Large smoothing variance → low clean accuracy, large certified radius
• For highest certified accuracy under a given radius, an optimal 

smoothing variance exists
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Conclusion
• TSS: a framework for certifying ML robustness 

against semantic transformations
• Categorize semantic transformations into 

resolvable (R) and differentiable resolvable (DR)
• Apply TSS-R and TSS-DR respectively
• Achieve significantly higher certified robustness 

than state-of-the-arts
• First work that achieves nontrivial certified 

robustness on ImageNet
• Achieve high empirical robustness against 

adaptive attacks and unforseen transformations
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