UIUC Secure Learning Lab (o

TSS

Transformation-Specific Smoothing
for Robustness Certification

Linyi Li*, Maurice Weber*, Xiaojun Xu, Luka Rimanic,
Bhavya Kailkhura, Tao Xie, Ce Zhang, Bo Li

I ILLINOIS ETH:ziirich




Neural Networks are Vulnerable to
Adversarial Attacks

« W.l.o.g, consider image classification problem

« Given an image as input, ML model predicts a class label

« However, attacker can usually craft adversarial input:
* Indistinguishable from original input
» But fool NN to make wrong prediction

+0.001 *

Predicted as Small Predicted as
“cat” Perturbation “dog”

Szegedy, Christian, et al. "Intriguing properties of neural networks." ArXiv:1312.6199.




Adversarial Attack via Semantic
Transformations

» Certifying and improving robustness for ML models against £,
bounded perturbations is well-studied
e Clean input = x,
* Attacker needs to input x s.t. |[x — xoll, < €

« However, in the real-world, attacker can also apply semantic

transformations (e.g., brightness, rotation, scaling) to fool ML
models

¥ Adversarial examples found on
~ Nvidia DAVE-2 self-driving car
& platform by DeepXplore

(a) Input 1 (b) Input 2 (darker version of 1)

Pei, Kexin, et al. “Deepxplore: Automated whitebox testing of deep learning systems.” SOSP 2017.



Can we get ML models that are certifiably
robust to various semantic transformations?




Certify Robustness against
Semantic Transformations

* We propose a framework for certifying ML robustness
against semantic transformations: TSS

1. Rotation 2. Gauss. Blur 3. Contrast
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Compared with Existing Work

» Existing certified robustness methods:
* Too loose on small models
» Too slow for large models
» Too specific for certain transformations

* OQur work:
 Tight: achieves state-of-the-art certified accuracy
« Scalable: for the first time, achieve certified robustness on ImageNet
* 30.4% certified accuracy against arbitrary rotation within 30°

* General: general methodology for analyzing and certifying against
transformations

* Support > 10 common transformations:
* rotation, scaling, brightness, contrast, blur, ...
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Threat Model

» Image classification task: e ~
» Input space: X € R?
* Output space: Y ={1, ..., C} Example:

S : ¢ : . : * ¢p(x, a) rotates input image
emantic transtormation as a runction x by a degree clockwise

¢: X XZ > X + Define Z = [—30°,30°]
e Parameter space: Z € R™

o Attacker can: > Attacker can arbitrarily
1. arbitrarity choose parameter a € Z rotate the image within 30°
2. transform x to ¢(x, a) K Y

3. input ¢(x, @) to the classifier



Certification Goal

 For our classifier h: X - Y = {1, ..., C}
 Given clean input x € X
* Wish to find a set § € Z such that we can guarantee

h(x) = h(qb(x, a)),‘v’a €S
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Real-Valued Parameter Space

» The parameter space is real-valued
 The input image space is real-valued

» Infinite possible inputs after transformation
»Cannot certify via enumeration




Large £, Difterence

- Semantic transformation incurs large £, difference

» Brightness +10% incurs ¢, difference 0.1x,/# pixels ~ 38.7 on
ImageNet

»Cannot certify with existing ¢, based methods
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Interpolation

* Some transformations like rotation and scaling uses bilinear
interpolation

» Certification needs to take complex interpolation effects into
account
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Threat Model & Certification Goal
Challenges

» Our Framework: TSS

» Generalized Randomized Smoothing
« TSS-R: Certifying Resolvable Transformations
« TSS-DR: Certifying Differentially Resolvable Transformations



Generalized Randomized Smoothing

 Gilven an arbitrary base classifier h: X - Y = {1,2, ..., C}
e Let ¢p(x,b) = x + b - (1, ...,1)T be the brightness transformation
e Let £ ~ NV (0, 02) be the smoothing distribution

* Define q(v|x; €) = Pr(h(¢(x,€)) = )

»>q 1s probability of predicting class y under noise in parameter space

* We construct smoothed classifier g: X - Y = {1,2,...,C}:

g(x; &) = argmax, ey q(y|x; &)
» Returns the class with highest g
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Smoothness Brings Robustness

Recall g(x; ) = argmaxyey q(v|x; €) = argmaxyey Pr(h(¢(x, &) = y)

o If for the clean input x,, g({panda, monkey, cat}|x,, €) = {0.80,0.15, 0.05}
« Slightly change the brightness by b:
e ~N(0,0%) becomes &' ~ N(b, %)

o Slightly shifting € mean,
g(pandalxg, €) is still guaranteed to be the largest

Prob. Density 0.15 -
» over Brightness
3 .
Change ©u g.‘) @

Credit to Cohen, Jeremy et al. Certified Adversarial Robustness
via Randomized Smoothing. ICML 2019



Robustness Guarantee

* p,: probability of top class (panda)
* pg: probability of runner-up class (monkey)
« £ ~ N(0,0%): smoothing distribution:

g probably returns the tog—class panda as long as brightness change
b < - (@7 (pa) — P~ (pp)),

where ®~1 is the inverse standard Gaussian CDF



However...

» Guaranteed robustness relies on overlapped supports
between original and transformed input

» For some transformations, there are overlapped supports @

Additive
Perturbation

Brightness
Change

\4

* For some transformations, hard to flnd overlappe supports

« Smoothing over rotated input =
Rotating two times

 Rotate 15" + rotate 15" # rotate 30°
* Due to interpolation
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Resolvable Transformations vs.
Differentially Resolvable Transformations

 Transformation with overlapped supports = resolvable
« Formally, for any a € Z, there exists function y,: Z - Z,

$(p(x, @), B) = p(x,va(B))

* (*informal) Transformation without overlapped supports but
continuous = differentially resolvable

(Differentially Resolvable Transformations O O n
8 , ™ Rotation Scaling
Resolvable ® Brightness & Contrast & Brightness & Brightness
Transformations o @ O o
o Brightness Cor;trast Rotation Scaling
: Gaussian Blur
\ Translation ® » @ Other Compositions »

19



TSS-R: Certifying Resolvable
Transformations

 For resolvable transformations, use our generalized randomized
smoothing to smooth and provide robustness certification
 Brightness, contrast, translation, Gaussian blur, ...

Interesting findings:

e Although Gaussian and uniform smoothing distribution shown best for
¢, bounded additive perturbations

 For these low-dimensional transformations, Exponential
distribution usually performs the best

« Some transformations have constrained parameter space, customized

smoothing distributions lead to higher certified robustness for them

« E.g., Gaussian blur’s radius cannot be negative, use exponential or folded
Gaussian as smoothing distributions
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TSS-DR: Certifying Differentially
Resolvable Transformations

» Differentially resolvable transformations may not have

overlapped supports — cannot directly apply generalized
randomized smoothing

* Luckily, we find

 Transformations have low-dimensional parameter space
« E.g., one-dimensional rotation angle

»Moderate number of samples lead to an e-cover of parameter space
* (*informal) By definition, they are continuous w.r.t. parameter change

« E.g., rotated image w.r.t the rotation angle is continuous
« Preprocessing masks out pixels outside of inscribed circle to improve continuity

»Given Lipschitz L, maximum ¢, difference from the nearest sample in
€-COVer 1s €L
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Reduction to Certifying £, Robustness

»Moderate number of samples lead to an e-cover of parameter
space

»Given Lipschitz L, maximum ¥, difference from the nearest
sample in e-cover is €L

» If for any sample in e-cover, we can certify an ¢, robust radius >
eL, then we are done @
Certify an £, robust radius?
 Apply additive transformation suffices
* Problem to solve: compute the maximum ¢, difference
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Interpolation Error

. a Interval to Certify b
* Given these samples, + o—0—0—0—0—0—0—0—0 +
we now need to figure :
out the maximum a; Qa @; Q41 - @y-1 @y First-Level Sampling
. . —— —— ——
interpolation error M, M M,_, Maximum Interpolation Error
* i.e., maximum ¥, / A \ UP\I;’E bounds M;:
difference from any a; it M=, max VM = Ms
transformed image to ‘ s 8888 ‘ Second-Level Sampling
their nearest samples N gi(@)
. . ) \ ................................................ ;Upper bound for ; g/lg;(l _Hgi(y)
° We Comblne Stratlfled . .................................... Upper bound for Vi’,j'g/lsa)z(ij#lgi-l-l(Y)
Sampling and efficient Oyf 1)/)/_ """""""""""" y 9i+1(@)
. . . L ij Vij+1 in
Lipschitz computation L LY el
ounding M; from second-level sampling and Lipschitz constant:
tO upper bound SuCh M; = max min{Upper bound for max g;(y),Upper bound for max g;:1(¥)}
difference 1=j=n-1 VijSY=VYij+1 Vi jSY=VYij+1
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Threat Model & Certification Goal

Challenges
Our Framework: TSS

» Experimental Evaluation




Experimental Setup

 Base Classifier Training;:
« We combined consistency-enhanced training [1] with transformation-
specific data augmentation to obtain base classifier for smoothing
* Metric: Certified Robust Accuracy
 The fraction of samples (within the test subset) that are
* both certified robust and classified correctly
 under any attack whose parameter is within predefined range

25
[1] Jongheon Jeong and Jinwoo Shin. Consistency Regularization for Certified Robustness of Smoothed Classifiers. NeurIPS 2020



Certified Robust Accuracy

Transformation Type Dataset Attack Radius TSS | DeepG[2] Interval [47] VeriVis[39] Semanify-NN [35]  DistSPT [13]

MNIST Squared Radius & < 36 90.6% - - - - -
Gaussian Blur Resolvable  CIFAR-10 Squared Radius a < 16 63.6% - - - - -
ImageNet Squared Radius & < 36 51.6% - - - - -
[Ax? 2 - - -

Translation Resolvable, MNIST Ax“+Ay“ <8 99.6% 98.8% 98.8%
(Reflection Pad.) Discrete  CIFAR-10 VAxZ + Ay? < 20 80.8% - - 65.0% 65.0% -
ImageNet VAxZ + Ay? < 100 50.0% - - 43.2% 43.2% -
MNIST b +50% 98.2% - - - - -
Brightness Resolvable  CIFAR-10 b+ 40% 87.0% - - - - -
ImageNet b+ 40% 70.0% - - - - -

MNIS < 0.4% 0.0% < 74%
S ( Et - Of_t I I ( E - art Contrast T ¢ 50%, b + 50% R (c,b+30%) (c,b+30%) i (c £5% b + 50%) i

Resolvable,
and 0.0% 0.0%

Composition - . o 22 ) i )
p CIFAR-10 ¢ % 40%, b + 40% BZA%N (6 b£30%)  (c,b+30%)

o ® Brightness
Certified g cxaonpsan laas| o T | _
i 2 2 - i - - -
Gaussian Blur, Resolvable, MNIST a < 1,4/Ax2 + Ay? < 5,¢,b +10% |]90.2%

Translation, Bright- ' Gtion CIFAR-10  a < 1,Ax2+Ay? <5,cb+10% |[58.2% - - - - -

R Ob u S tn e S S ness, and Contrast ImageNet a < 10,/AxZ + Ay? < 10,¢,b +20% | |32.8% - - - - -
< 85.8% <6.0%

MNIST r+50° 97.4% : . - < 92.48% 82%
Rotati Differentially 10° 70.6% (r6:; :g : (r2:(t): Zg : 37%
otation Resolvable  CIFAR-10 T 5 o o e . ) °
r + 30 163.6% 10.6% 0.0% - < 49.37% 22%
ImageNet r +30° 30.4% - - - - 16% (rand. attack)
. Differentially MNIST s+30% 97.2% 85.0% 16.4% - - -
Scallng CIFAR-10 s+30% 58.8% 0.0% 0.0% - - -
Resolvable
ImageNet s+ 30% 26.4% - - - - -
. . MNIST r+50°b+20% 97.0% - - - - -
Rotation Differentially o
r+10° b+ 10% 70.2% - - - - -
and Resolvable,  CIFAR-10 o b
Brightness Composition r£30° b+ 20% 61.4% - - - - -
ImageNet r+30°b+20% 26.8% - - - - -
Scaling Differentially =~ MNIST s+ 50%,b + 50% 96.6% - - - - -
and Resolvable,  CIFAR-10 s+ 30%,b + 30% 54.2% - - - - -
Brightness Composition  ImageNet s+ 30%,b + 30% 23.4% B - - - -
o
- 0, < . . (d - - - - -
o, Dty PN T
Brightness, - ’ e 1012 = - et i - - - N
& Resalvable,  CIFAR-10 r +30°,b + 20% ||8]|2 < .05 55.2% - - - - -
and £, Composition o
ImageNet r+30° b + 20%,||6]|2 < .05 26.6% - - - - -
Scaling, Differentially =~ MNIST s+ 50%, b + 50%, ||8]]2 < .05 96.4% - - - - -
Brightness, Resolvable,  CIFAR-10 s+ 30%, b + 30%, ||8]]2 < .05 51.2% - - - - -
and & Composition  ImageNet s +30%, b + 30%, ||6]|2 < .05 22.6% - - - - -




Robustness under Existing Attacks

* We study actual robustness under a random attack and an
adaptive attack
« TSS accuracy under attack > TSS certified robust accuracy
>TSS certification is correct

 TSS certified robust accuracy >> Standard models’ accuracy under
attack

>TSS certification is meaningful in practice
« Adaptive attack reduces standard models’ accuracy more
» TSS models provides strong robustness against adaptive attacks
« The gap between accuracy under attack and certified robust accuracy is
larger for larger dataset (e.g., ImageNet)

» Improvement rooms exist



Other Findings

There are many more transformations in the wild world

« Evaluated on natural corruption datasets CIFAR-10-C and

ImageNet-C:

« TSS models are still better than standard models
« Sometimes even better than SOTA on CIFAR-10-C and ImageNet-C

* Evaluated on the highest level of corruptions
 Provides strong robustness guarantees against transformation

compositions, even on .

arge-scale ImageNet

CIFAR-10

ImageNet

Vanilla AugMix [21] TSS | Vanilla

AugMix [21]  TSS

Empirical Accuracy

on CIFAR-10-C and ImageNet-C

53.9% 65.6% 67.4% | 18.3%

25.7% 21.9%

Certified Accuracy against
Composition of Gaussian Blur,

Translation, Brightness, and Contrast

0.0% 0.4% 58.2% 0.0%

0.0% 32.8%
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Other Findings (Cont.d)

« If the attack’s perturbation radius (i.e., rotation angle) beyond
the predefined radius used in training...
« TSS still preserves high certified robust accuracy
« For model defending 40% brightness change on ImageNet,
 Certified accuracy against 40% change is 70.4%
 Certified accuracy against 50% change is 70.0%
* Smoothing variance is a tunable hyperparameter
« Small smoothing variance — high clean accuracy, small certified radius
 Large smoothing variance — low clean accuracy, large certified radius

 For highest certified accuracy under a given radius, an optimal
smoothing variance exists



Conclusion

« TSS: a framework for certifying ML robustness

against semantic transformations T BB il sl PP

 Categorize semantic transformations into Slides ~ Linvil.com/res/pub/TSs-CC521-

resolvable (R) and differentiable resolvable (DR ) e e
« Apply TSS-R and TSS-DR respectively

 Achieve significantly higher certified robustness
than state-of-the-arts

e First work that achieves nontrivial certified
robustness on ImageNet

 Achieve high empirical robustness against

adaptive attacks and unforseen transformations i

Provably Robust

Prediction against a
Given Transformation

4. Brightness 5.3)+ @)


http://arxiv.org/abs/2002.12398
http://linyil.com/res/pub/TSS-CCS21-slides.pdf
http://github.com/AI-secure/semantic-randomized-smoothing

