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Introduction Problem Formulation

* ML systems may be biased towards particular groups

* Existing approaches mainly evaluate fairness

» Important & challenging to rigorously certify fairness,
which is our focus

Given model hg(-), compute an upper bound of its expected
loss on a fair test distribution Q, i.e.,

-
upper bounding max E olf(hg(X),Y
Main Contributions: P | 5 Q h ()_(’Y) Q_[ (_9(_ ) _)]
«  We formulate certified fairness problem of an end-to- s.t. dist(P,Q) < p, Q is a fair distribution
end ML model

*  We propose an effective fairness certification
framework that for the first time solves this certified
fairness problem by subpopulation decomposition

*  We evaluate our framework on 6 real-world datasets
to show its tightness and scalability

Test distribution @ not too
far from training distribution

Measure performance on
distribution with fair base rate

where  p User-specified distance threshold

_ dist(?,Q) Hellinger distance between distributions y

Compute upper
bound of
expected loss for
worst-case Q
as fairness

Core Methodology:
Subpopulation Decomposition

Decompose according to sensitve attribute X4 and

Neighboring
Distributions

label Y certification N ;
> L Fair T. NP
P = Z PriX. =s,Y = y]- P, ., Distributions raining
pr e B ) " Distribution P
e
Q= Z %F[XS =5, Y =yl 0, Loss landscape of E(x y)~o[£(hg(X),Y)] w.r.t. Q
s=1y=1
Theoretical Observations
Distance | Fair Distribution Constraint
Constraint Decomposed to constraints on 7y, Osy, |« Consider discrete sensitive attribute X and label Y
. Define fair distribution to be distribution with fair
Fair Distribution | Equal to constraints on base rate-:
Constraint I;DF[XS =s,Y =y], %F[Xs =5,V =y] (X%“NQ[Y y|Xg =5s,] = (X,§§~Q[Y = y|Xs = 5,1, VY, 84, Sp

» Sensitive attribute X has no effect on label Y
at population level
dist(P,0) < p = * Such fair distribution admits unconstrained

¢ parameterization:

PriX, =sY = y]Pr[X =5s,Y =y] 1—d1$t(5 , Qs )2 <0 — — _
J ( y Y) (X%‘NQ[Y y|Xs = s] = ks,

Distance constraint

1—-p*—

MU)

(ks, 1y € [0,1])
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Certification Procedure (Informal, Theorem 3)

Input: subpopulation statistics & subpopulation level constraints
1. Query subpopulation statistics:

I;DI’[XS =s,Y =y], [E(X,Y)fv?s’y [£(he (X),Y)]

2. Divide kg, 7, € [0,1] into grids

3. In each grid:

*  Known quantities:
[;)r[XS =s,Y =yl %F[XS =s,Y=y], [E(X,Y)fv?’sy [£(he(X),Y)]

* Variables to optimize: diSt(Ps’y; Qs,y)z (subject to distance constraints)
* Key variable to upper bound: E(x,v)~0s, [£(hg(X),Y)]
» Plug in Gramian bound [Weber et al, ICML 2022] to get upper bound

» Optimize the upper bound with low-dimensional convex optimization
» Bypass non-convexity with variable transforms

4. Maximization over all grids = Output: Certification of fairness!

Remarks:

* For sensitive shifting setting (no distribution shift within each subpopulation, only portions
among subpopulations shifted), we have simpler fairness certification procedure with tighter
guarantees

* Framework amenable to finite sampling error: with high-confidence intervals of statistics, we
provide high-confidence probabilistic certification.

* Framework support any population loss function, e.g., can bound group risk discrepancy

* Our fairness notion implies demographic parity (DP) and equalized odds (EO)

Experimental Evaluation

For sensitive shifting setting:
COMPAS
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> Usually tight,
especially in
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Figure 1: Certified fairness with sensitive shifting. Grey points are results on generated distributions (Q) and
the black line is our fairness certificate based on Thm. 2. We observe that our fairness certificate is usually tight.

Soundness: gray
points always below
black curve

> Always sound

For general shifting setting:
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x-axis: distance threshold p Figure 2: Certif
y-axis: expected loss

More results & ablation
studies in our paper!
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ed fairness with general shifting. Grey points are results on generated distributions (Q) and the
black line is our fairness certificate based on Thm. 3. We observe that our fairness certificate is non-trivial.



