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Abstract

Neural networks (NNs) are known to be vulner-
able against adversarial perturbations, and thus
there is a line of work aiming to provide ro-
bustness certification for NNs, such as random-
ized smoothing, which samples smoothing noises
from a certain distribution to certify the robust-
ness for a smoothed classifier. However, as
shown by previous work, the certified robust ra-
dius in randomized smoothing suffers from scal-
ing to large datasets (“curse of dimensionality”).
To overcome this hurdle, we propose a Double
Sampling Randomized Smoothing (DSRS) frame-
work, which exploits the sampled probability
from an additional smoothing distribution to
tighten the robustness certification of the previous
smoothed classifier. Theoretically, under mild
assumptions, we prove that DSRS can certify
Θ(

√
d) robust radius under ℓ2 norm where d is

the input dimension, implying that DSRS may
be able to break the curse of dimensionality of
randomized smoothing. We instantiate DSRS
for a generalized family of Gaussian smooth-
ing and propose an efficient and sound comput-
ing method based on customized dual optimiza-
tion considering sampling error. Extensive ex-
periments on MNIST, CIFAR-10, and ImageNet
verify our theory and show that DSRS certifies
larger robust radii than existing baselines consis-
tently under different settings. Code is available
at https://github.com/llylly/DSRS.

1. Introduction
Neural networks (NNs) have achieved great advances on
a wide range of tasks, but have been shown vulnerable
against adversarial examples (Szegedy et al., 2014; Good-
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Figure 1. Upper: Standard certification for randomized smoothing
leverages information from only one distribution (PA) to compute
robustness certification. Lower: DSRS leverages information from
two distributions (PA and QA) to compute certification for the
smoothed classifier, yielding significantly larger certified radius.

fellow et al., 2015; Eykholt et al., 2018; Wang et al., 2021;
Qiu et al., 2020; Li et al., 2020a; Zhang et al., 2021). A
plethora of empirical defenses are proposed to improve the
robustness; however, most of these are broken by strong
adversaries again (Carlini & Wagner, 2017; Athalye et al.,
2018; Tramèr et al., 2020). Recently, there are great efforts
in developing certified defenses for NNs under certain adver-
sarial constraints (Wong & Kolter, 2018; Raghunathan et al.,
2018; Li et al., 2020b; Xu et al., 2020; Li et al., 2019b).

Randomized smoothing (Cohen et al., 2019; Li et al., 2019a)
has emerged as a popular technique to provide certified
robustness for large-scale datasets. Concretely, it sam-
ples noise from a certain smoothing distribution to con-
struct a smoothed classifier, and thus certifies the robust
radius for the smoothed classifier. Compared to other tech-
niques (Wong & Kolter, 2018; Mirman et al., 2018; Gowal
et al., 2019; Zhang et al., 2020b), randomized smoothing is
efficient and agnostic to the model, and is applicable to a
wide range of ML models, including large ResNet (He et al.,
2016) on the ImageNet dataset.

To improve the certified robust radius, existing studies (Co-
hen et al., 2019; Lee et al., 2019; Li et al., 2019a; Yang
et al., 2020) have explored different smoothing distributions.
However, the improvement is limited. For example, ℓ2 certi-
fied robust radius does not increase on large datasets despite
that the input dimension d increases (Cohen et al., 2019),
resulting in a low ℓ∞ certified radius on large datasets, theo-
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retically shown as an intrinsic barrier of randomized smooth-
ing (“curse of dimensionality” or “ℓ∞ barrier”) (Yang et al.,
2020; Blum et al., 2020; Kumar et al., 2020b; Hayes, 2020;
Wu et al., 2021).

Given these challenges toward tight robustness certifica-
tion, a natural question arises: Q1: Is it possible to cir-
cumvent the barrier of randomized smoothing by certifying
with additional “information”? Q2: What type of infor-
mation is needed to provide tight robustness certification?
To answer these questions, we propose a Double Sampling
Randomized Smoothing (DSRS) framework to leverage the
sampled noises from an additional smoothing distribution
as additional information to tighten the robust certification.
In theory, we show that (1) ideally, if the decision region of
the base classifier is known, DSRS can provide tight robust-
ness certification; (2) more practically, if the inputs, which
can be correctly classified by the base classifier, satisfy the
concentration property within an input-centered ball with
constant mass under standard Gaussian measure, the stan-
dard Neyman-Pearson-based certification (Li et al., 2019a;
Cohen et al., 2019; Salman et al., 2019; Yang et al., 2020)
can certify only a dimension-independent ℓ2 radius, whereas
DSRS with generalized Gaussian smoothing can certify ra-
dius Ω(

√
d) (under ℓ2 norm), which would increase with

the dimension d, leading to tighter certification. Under more
general conditions, we provide numerical simulations to
verify our theory. Our results provide a positive answer to
Q1 and sufficient conditions for Q2, i.e., DSRS may be able
to circumvent the barrier of randomized smoothing.

Motivated by the theory, we leverage a type of generalized
Gaussian (Zhang et al., 2020a) as the smoothing distribution
and truncated generalized Gaussian as an additional distribu-
tion. For this type of concretization, we propose an efficient
and sound computation method to compute the certifiably
robust radius for practical classifiers considering sampling
error. Our method formulates the certification problem given
additional information as a constrained optimization prob-
lem and leverages specific properties of the dual problem to
decompose the effects of different dual variables to solve
it. DSRS is fully scalable since the computational time is
nearly independent of the size of the dataset, model, or sam-
pling. Our extensive experimental evaluation on MNIST,
CIFAR-10, and ImageNet shows that (1) under large sam-
pling size (2× 105 − 8× 105), the certified radius of DSRS
consistently increases as suggested by our theory; (2) under
practical sampling size (105), DSRS can certify consistently
higher robust radii than existing baselines, including stan-
dard Neyman-Pearson-based certification.

As further discussed in Appendix L, we believe that DSRS
as a framework opens a wide range of future directions for
selecting or optimizing different forms of additional infor-
mation to tighten the certification of randomized smoothing.

We summarize the main technical contributions as follows:

• We propose a general robustness certification framework
DSRS, which leverages additional information by sam-
pling from another smoothing distribution.

• We prove that under practical concentration assumptions,
DSRS certifies Ω(

√
d) radius under ℓ2 norm with d the

input dimension, suggesting a possible way to circum-
vent the intrinsic barrier of randomized smoothing.

• We concretize DSRS by generalized Gaussian smooth-
ing mechanisms and propose a method to efficiently
compute the certified radius for given classifiers.

• We conduct extensive experiments, showing that DSRS
provides consistently tighter robustness certification than
existing baselines, including standard Neyman-Pearson-
based certification across different models on MNIST,
CIFAR-10, and ImageNet.

Related Work. For the certification method of random-
ized smoothing, most existing methods leverage only the
true-class prediction probability to certify. In this case, the
tightest possible robustness certification is based on the
Neyman-Pearson lemma (Neyman & Pearson, 1933) as first
proposed by Cohen et al. (2019) for certifying ℓ2 radius
under Gaussian smoothing. Several methods extend this
certification to accommodate different smoothing distribu-
tions and different ℓp norms (Dvijotham et al., 2020; Yang
et al., 2020; Zhang et al., 2020a; Levine & Feizi, 2021). In
randomized smoothing, the ℓ2 certified robust radius r is
similar across datasets of different scales, resulting in the
vanishing ℓ∞ certified radius r/

√
d when input dimension

increases. This limitation of existing certification methods
of randomized smoothing is formally proved (Yang et al.,
2020; Blum et al., 2020; Kumar et al., 2020b; Hayes, 2020;
Wu et al., 2021) and named “ℓ∞ barrier” or “curse of di-
mensionality”.

Recent work tries to incorporate additional information be-
sides true-class prediction probability to tighten the certifi-
cation and bypass the barrier. For ℓ2 and ℓ∞ certification, to
the best of our knowledge, gradient magnitude is the only
exploited additional information (Mohapatra et al., 2020;
Levine et al., 2020). However, in practice, the improve-
ment is relatively marginal and requires a large number of
samples (see Appendix J.5). Some other methods provide
tighter certification given specific model structures (Kumar
et al., 2020a; Chiang et al., 2020; Lee et al., 2019; Awasthi
et al., 2020). DSRS instead focuses on leveraging model-
structure-agnostic additional information. More discussion
on related work is in Appendix K.

2. Preliminaries and Background
Define [C] := {1, . . . C}. Let ∆C be the C-dimensional
probability simplex. We consider a multiclass classification
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model F : Rd → [C] as the base classifier, where d is the
input dimension, and the model outputs hard-label class
prediction within [C]. The original smoothing distribution
P and additional smoothing distribution Q are both sup-
ported on Rd. We let p(·) and q(·) be their density functions
respectively. We assume that both p and q are positive and
differentiable almost everywhere, i.e., the set of singular
points has zero measure under either P or Q. These as-
sumptions hold for common smoothing distributions used in
the literature such as Gaussian distribution (Lécuyer et al.,
2019; Li et al., 2019a; Cohen et al., 2019; Yang et al., 2020).

Randomized smoothing constructs a smoothed classifier
from a given base classifier by adding input noise follow-
ing original smoothing distribution P . For input x ∈ Rd,
we define prediction probability under P by function fP :
Rd → ∆C :

fP(x)c := Pr
ϵ∼P

[F (x+ ϵ) = c] where c ∈ [C]. (1)

The smoothed classifier F̃P : R → [C] (or F̃ when P is
clear from the context) predicts the class with the highest
confidence after smoothing with P:

F̃P(x) := argmax
c∈[C]

fP(x)c. (2)

We focus on robustness certification against ℓp-bounded
perturbations for smoothed classifier F̃ , where the standard
certification method is called Neyman-Pearson-based certifi-
cation (Cohen et al., 2019) (details in Appendix A, certified
radius from it denoted by rN−P). Concretely, certification
methods compute robust radius r defined as below.

Definition 1 (Certified Robust Radius). Under ℓp norm (p ∈
R+ ∪ {+∞}), for given smoothed classifier F̃P and input
x0 ∈ Rd with true label y0 ∈ [C], a radius r ≥ 0 is called
certified (robust) radius for F̃P if F̃P always predicts y0
for any input within the r-radius ball centered at x0:

∀δ ∈ Rd, ∥δ∥p < r, F̃P(x0 + δ) = y0. (3)

3. DSRS Overview
We propose Double Sampling Randomized Smoothing
(DSRS), which leverages the prediction probability from
an additional smoothing distribution Q (formally QA :=
fQ(x0)y0 = Prϵ∼Q[F (x+ ϵ) = y0]), along with the pre-
diction probability from the original smoothing distribution
P (formally PA := fP(x0)y0

as in Eqn. (1), also used
in Neyman-Pearson-based certification), to provide robust-
ness certification for P-smoothed classifier F̃P . Note that
both PA and QA can be obtained from Monte-Carlo sam-
pling (see Sections 5.1 and 5.2). Formally, we let rDSRS

denote the tightest possible certified radius with prediction
probability from Q, then rDSRS can be defined as below.

Definition 2 (rDSRS). Given PA and QA,

Table 1. Definitions of smoothing distributions in this paper. In the
table, k ∈ N, σ′ =

√
d/(d− 2k)σ.

Name Notation Density Function

Standard Gaussian N (σ) ∝ exp
(
−∥ϵ∥2

2

2σ2

)
Generalized Gaussian N g(k, σ) ∝ ∥ϵ∥−2k

2 exp
(
−∥ϵ∥2

2

2σ′2

)
Truncated Standard Gaussian Ntrunc(T, σ) ∝ exp

(
−∥ϵ∥2

2

2σ2

)
· I[∥ϵ∥2 ≤ T ]

Truncated Generalized Gaussian N g
trunc(k, T, σ) ∝ ∥ϵ∥−2k

2 exp
(
−∥ϵ∥2

2

2σ′2

)
· I[∥ϵ∥2 ≤ T ]

rDSRS := max r s.t.

∀F : R → [C], fP(x0)y0
= PA, f

Q(x0)y0
= QA

⇒∀x, ∥x− x0∥p < r, F̃P(x) = y0.

(4)

Intuitively, rDSRS is the maximum possible radius, such
that any smoothed classifier constructed from base classifier
satisfying PA and QA constraints cannot predict other labels
when the perturbation magnitude is within the radius.

In Section 4, we will analyze the theoretical properties of
DSRS, including comparing rDSRS and rN−P under the con-
centration assumption. Computing rDSRS is nontrivial, so
in Section 5, we will introduce a practical computational
method that exactly solves rDSRS when P and Q are stan-
dard and generalized (truncated) Gaussian. In Appendix G,
we will show method variants to deal with other forms of
P and Q distributions. In Appendix L, we will further
generalize the DSRS framework.

Smoothing Distributions. Now we formally define the
smoothing distributions used in DSRS. We mainly con-
sider standard Gaussian N (Cohen et al., 2019; Yang
et al., 2020) and generalized Gaussian N g (Zhang et al.,
2020a). Let N (σ) to represent standard Gaussian distribu-
tion with covariance matrix σ2Id that has density function
∝ exp(−∥ϵ∥22/(2σ2)).1 For k ∈ N, we let N g(k, σ) to
represent generalized Gaussian whose density function ∝
∥ϵ∥−2k

2 exp(−∥ϵ∥22/(2σ′2)) where σ′ =
√

d/(d− 2k)σ.
Here we use σ′ instead of σ to ensure that the expected
noise

√
E∥ϵ∥22 of N g(k, σ) is the same as N (σ). The gen-

eralized Gaussian as the smoothing distribution overcomes
the “thin shell” problem of standard Gaussian and improves
certified robustness (Zhang et al., 2020a); and we will reveal
more of its theoretical advantages in Section 4.

As the additional smoothing distribution Q, we will
mainly consider truncated distributions within a small
ℓ2 radius ball. Specially, truncated standard Gaus-
sian is denoted by Ntrunc(T, σ) with density function ∝
exp(−∥ϵ∥22/(2σ2)) · I[∥ϵ∥2 ≤ T ]; and truncated general-
ized Gaussian is denoted by N g

trunc(k, T, σ) with density
function ∝ ∥ϵ∥−2k

2 exp(−∥ϵ∥22/(2σ′2)) · I[∥ϵ∥2 ≤ T ].

In Table 1, we summarize these distribution definitions.
1In this paper,N (σ) is a shorthand ofN (0, σ2Id).
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4. Theoretical Analysis of DSRS
In this section, we theoretically analyze DSRS to answer
the following core question: Does QA, the prediction proba-
bility under additional smoothing distribution, provide suffi-
cient information for tightening the robustness certification?
We first show that if the support of Q is the decision region
of true class, DSRS can certify the smoothed classifier’s
maximum possible robust radius. Then, under concentration
assumption, we show the ℓ2 certified radius of DSRS can be
Ω(

√
d) that is asymptotically optimal for bounded inputs.

Finally, under more general conditions, we conduct both nu-
merical simulations and real-data experiments to verify that
the certified radius of DSRS increases with data dimension
d. These analyses provide a positive answer to the above
core question.

DSRS can certify the tightest possible robust radius.
Given an original smoothing distribution P and a base clas-
sifier F0. At input point x0 ∈ Rd with true label y0, we
define the tightest possible certified robust radius rtight to
be the largest ℓp ball that contains no adversarial example
for smoothed classifier F̃P

0 :
rtight := max r s.t.∀δ ∈ Rd, ∥δ∥p < r, F̃P

0 (x0+δ) = y0.

Then, for binary classification, if we choose an additional
smoothing distribution Q whose support is the decision
region or its complement, then DSRS can certify robust
radius rtight.
Theorem 1. Suppose the original smoothing distribution P
has non-zero density everywhere, i.e., p(·) > 0. For binary
classification with base classifier F0, at point x0 ∈ Rd, let
Q be an additional distribution that satisfies: (1) its support
is the decision region of an arbitrary class c ∈ [C] shifted
by x0: supp(Q) = {x − x0 : F0(x) = c}; (2) for any
x ∈ supp(Q), 0 < q(x)/p(x) < +∞. Then, plugging
PA = fP

0 (x0)c and QA = fQ
0 (x0)c (see Eqn. (1)) into

Definition 2, we have rDSRS = rtight under any ℓp (p ≥ 1).

Proof sketch. We defer the proof to Appendix F.1. At a
high level, with this type of Q, we have QA = 1 or QA = 0.
Then, from the mass of the Q’s support on P and PA, we can
conclude that the Q’s support is exactly the decision region
of label c or its complement. Thus, the DSRS constraints (in
Eqn. (4)) are satisfied iff F differs from F0 in a zero-measure
set, and thus we exactly compute the smoothed classifier
F̃P
0 ’s maximum certified robust radius in DSRS. An exten-

sion to multiclass setting is in Appendix F.2.

Remark. For any base classifier F0,Q that satisfies conditions
in Theorem 1 exists, implying that with DSRS, certifying a
strictly tight robust radius is possible. In contrast, Neyman-
Pearson-based is proved to certify tight robust radius for linear
base classifiers (Cohen et al., 2019, Section 3.1), but for arbitrary
base classifiers, its tightness is not guaranteed. This result sug-
gests that, to certify a tight radius, just one additional smoothing

distributionQ is sufficient rather than multiple ones.
On the other hand, it is challenging to findQ whose support (or
its complement) exactly matches the decision region of an NN
classifier. In the following, we analyze the tightness of DSRS
under weaker assumptions.

DSRS can certify Ω(
√
d) ℓ2 radius under concentration

assumption.
We begin by defining the concentration property.

Definition 3 ((σ, Pcon)-Concentration). Given a base clas-
sifier F0, at input x0 ∈ R with true label y0, we call F0

satisfies (σ, Pcon)-concentration property, if for within Pcon-
percentile of small ℓ2 magnitude Gaussian N (σ) noise,
the adversarial example occupies zero measure. Formally,
(σ, Pcon)-concentration means

Pr
ϵ∼N (σ)

[F0(x0 + ϵ) = y0 | ∥ϵ0∥2 ≤ T ] = 1 (5a)

where T satisfies Pr
ϵ∼N (σ)

[∥ϵ∥2 ≤ T ] = Pcon. (5b)

Intuitively, (σ, Pcon)-concentration implies that the base clas-
sifier has few adversarial examples for small magnitude
noises during standard Gaussian smoothing. In Figure 4 (in
Appendix B), we empirically verified that a well-trained
base classifier on ImageNet may satisfy this property for
a significant portion of inputs. Furthermore, Salman et al.
(2019) show that promoting this concentration property by
adversarially training the smoothed classifier improves the
certified robustness. With this concentration property, DSRS
certifies the radius Ω(

√
d) under ℓ2 norm, as the following

theorem shows.

Theorem 2. Let d be the input dimension and F0 be the
base classifier. For an input point x0 ∈ Rd with true class
y0, suppose F0 satisfies (σ, Pcon)-Concentration property.
Then, for any sufficiently large d, for the classifier F̃P′

0

smoothed by generalized Gaussian P ′ = N g(k, σ) with
d/2 − 15 ≤ k < d/2, DSRS with additional smoothing
distribution Q = N g

trunc(k, T, σ) can certified ℓ2 radius

rDSRS ≥ 0.02σ
√
d (6)

where T = σ
√
2ΓCDF−1

d/2(Pcon) and ΓCDFd/2 is the

CDF of gamma distribution Γ(d/2, 1).

Proof sketch. We defer the proof to Appendix F.3. At high
level, based on the standard Gaussian distribution’s prop-
erty (Proposition F.1), we find QA = 1 under concentra-
tion property (Lemma F.2). With QA = 1, we derive a
lower bound of rDSRS in Lemma F.3. We then use: (1) the
concentration of beta distribution Beta(d−1

2 , d−1
2 ) (see

Lemma F.4) for large d; (2) the relative concentration of
gamma Γ(d/2, 1) distribution around mean for large d (see
Proposition F.5 and resulting Fact F.7); and (3) the mis-
alignment of gamma distribution Γ(d/2− k, 1)’s mean and
median for small (d/2− k) (see Proposition F.6) to lower
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bound the quantity in Lemma F.3 and show it is large or
equal to 0.5. Then, using the conclusion in Section 5 we
conclude that rDSRS ≥ 0.02σ

√
d.

Remark. (1) For standard Neyman-Pearson based certificaton,
rN−P = σΦ−1(fP(x0)y0). Along with the increase of input di-
mension d, to achieve growing ℓ2 certified radius, one needs the
prediction probability of true class under P , namely fP(x0)y0 ,
to grow simultaneously, which is challenging. Indeed, across
different datasets, fP(x0)y0 is almost a constant, which leads to
a constant ℓ2 certified radius and shrinking ℓ∞ radius for large
d. We further empirically illustrate this property in Appendix C.
(2) In contrast, as long as the model satisfies concentration prop-
erty, which may be almost true on large datasets as reflected
by Figure 4, with our specific choices of P and Q, DSRS can
achieve Ω(σ

√
d) ℓ2 radius on large datasets. This rate translates

to a constant Ω(σ) ℓ∞ radius on large datasets and thus breaks
the curse of dimensionality of randomized smoothing. We re-
mark that this

√
d rate is optimal when dataset input is bounded

such as images (otherwise, the ω(1) ℓ∞ radius leads the radius
to exceed the constant ℓ∞ diameter for large d). Therefore, un-
der the assumption of concentration property, DSRS provides
asymptotically optimal certification for randomized smoothing.
(3) Smoothing with generalized Gaussian distribution and choos-
ing a parameter k that is close to d/2 play an essential role
in proving the Ω(σ

√
d) certified radius. Otherwise, in Ap-

pendix F.4 we have Theorem 6 that shows any certification
methods cannot certify an ℓ2 radius c

√
d for any c > 0. This

adds another theoretical evidence for the superiority of general-
ized Gaussian that is cross-validated by Zhang et al. (2020a).

DSRS certifies tighter radius under general scenarios.
When the concentration property does not absolutely hold, a
rigorous theoretical analysis becomes challenging, since the
impact of a noninfinite dual variable needs to be taken into
account. This dual variable is inside a Lambert W function
where typical approximation bounds are too loose to provide
non-trivial convergence rates. Thus, we leverage the numeri-
cal computational method introduced in Section 5 to provide
numerical simulations and real-data experiments. We gener-
alize the concentration assumption by changing the holding
probability in Eqn. (5a) from 1 to α1/N , which corresponds
to (1− α)-confident lower bound of QA given N times of
Monte-Carlo sampling, where we set α = 0.1% following
the convention (Cohen et al., 2019). In this scenario, we
compare DSRS certification with Neyman-Pearson certifi-
cation numerically in Figure 2 (numerical simulations in
Figure 2(a) and ImageNet experiments in Figure 2(b)).

In Figure 2(a), we assume (σ, Pcon)-concentration with σ =
1, Pcon = 0.5 and different sampling number Ns. We
further assume PA = fP(x0)y0 = 0.6 as the true-class
prediction probability under P . In Figure 2(b), we take the
model weights trained by Salman et al. (2019) on ImageNet
and apply generalized Gaussian smoothing with d/2−k = 4
and σ = 0.50. We uniformly pick 100 samples from the test
set and compute (1− α)-confident certified radius for each
sample. We report certified accuracy (under different ℓ2

10
2

10
3

10
4

10
5

10
6

Input Dimension d

0.0

0.5

1.0

1.5

2.0

2.5

C
er

tif
ie

d 
R

ad
iu

s

Certified Radius with PA=0.6 and (1, 0.5)-Concentration

Neyman-Pearson Standard Gaussian
DSRS w/ N=100,α=0.1%
DSRS w/ N=1000,α=0.1%
DSRS w/ N=10000,α=0.1%
DSRS w/ N=100000,α=0.1%
DSRS w/ N=1000000,α=0.1%
DSRS w/ N=10000000,α=0.1%
DSRS w/ Deterministic Info. (Ideal)
MNIST Input Dim.
CIFAR-10 Input Dim.
ImageNet Input Dim.

(a) When holding probability in Eqn. (5a) is obtained from sampling
N times and confidence level 1− α = 99.9%, relation between cer-
tified radius (y-axis) and input data dimension d (x-axis). Different
curves correspond to different Ns.

0.0 0.5 1.0 1.5 2.0
r

0.0

0.1

0.2

0.3

0.4

0.5

C
er

tif
ie

d 
A

cc
ur

ac
y

ImageNet, smoothadv model from (Salmen et al., 2019), σ=0.50
Neyman-Pearson (N=50000)
Neyman-Pearson (N=100000)
Neyman-Pearson (N=200000)
DSRS (N=50000+50000)
DSRS (N=50000+100000)
DSRS (N=50000+200000)
DSRS (N=50000+400000)
DSRS (N=50000+800000)

(b) Relation between certified radius (x-axis) and certified accu-
racy (y-axis) on ImageNet models. Different curves correspond to
Neyman-Pearson and DSRS certification with different Ns. Sam-
pling error considered, confidence level = 99.9%.

Figure 2. Tendency of DSRS certified robust radius considering
sampling error. In both (a) and (b), DSRS certified radius grows
along with the increase of sampling number N but Neyman-
Pearson radius is almost fixed.
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Figure 3. Overview of DSRS computational method.

radius r) that is the fraction of certifiably correctly classified
samples by the smoothed classifier.

Remark. When the sampling error and confidence interval
come into play, they quickly suppress the Ω(

√
d) growth rate

of DSRS certified radius (blue curve) as shown in Figure 2(a).
Nonetheless, DSRS still certifies a larger radius than the standard
Neyman-Pearson method and increasing the sampling number
further enlarges the gap.

We consider another relaxed version of concentration prop-
erty in Appendix D, where DSRS still provides significantly
tighter robustness certification than Neyman-Pearson.

5. DSRS Computational Method
The theoretical analysis in Section 4 implies that additional
smoothing distribution Q helps to tighten the robustness cer-
tification over standard Neyman-Pearson-based certification
significantly. In this section, we propose an efficient compu-
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tational method to compute this tight certified robust radius
rDSRS (see Definition 2) when P is generalized Gaussian
and Q is truncated P as suggested by Theorems 2 and 6.

Compared with the classical certification for randomized
smoothing or its variants (cf. (Kumar et al., 2020a)), incor-
porating additional information raises a big challenge: the
Neyman-Pearson lemma (1933) can no longer be served
as the foundation of the certification algorithm due to its
incapability to handle the additional information.

Thus, we propose a novel DSRS computational method
by formalizing robustness certification as a constrained op-
timization problem and proving its strong duality (§5.1).
Then, we propose an efficient algorithm to solve this specific
dual optimization problem considering sampling error. The
detailed algorithm can be found in Alg. 2 in Appendix E.1:
1) we first perform a binary search on the certified radius r
to determine the maximum radius that we can certify; 2) for
current r, we determine the smoothed prediction confidence
PA and QA from the confidence intervals of predicting the
true class (§5.2); 3) then, for current r we solve the dual
problem by quick binary search for dual variables λ1 and
λ2 (see Eqn. (10)) along with numerical integration (§5.3).
To guarantee the soundness of numerical-integration-based
certification, we take the maximum possible error into ac-
count during the binary search. We will discuss further
extensions in §5.4.

5.1. DSRS as Constrained Optimization
We first formulate the robustness certification as a con-
strained optimization problem and then show several foun-
dational properties of the problem.

Following the notation of Definition 2, from the given base
classifier F0, we can use Monte-Carlo sampling to obtain

PA = fP
0 (x0)y0

, QA = fQ
0 (x0)y0

. (7)

In §5.2 we will discuss how to handle confidence intervals
of PA and QA. For now, we assume PA and QA are fixed.

Given perturbation vector δ ∈ Rd, to test whether smoothed
classifier F̃P

0 still predicts true label y0, we only need to
check whether the prediction probability fP

0 (x0 + δ)y0 >
0.5. This can be formulated as a constrained optimization
problem (C):

minimize
f

Eϵ∼P [f(ϵ+ δ)] (8a)

s.t. Eϵ∼P [f(ϵ)] = PA, Eϵ∼Q[f(ϵ)] = QA, (8b)

0 ≤ f(ϵ) ≤ 1 ∀ϵ ∈ Rd. (8c)

Remark. (C) seeks for the minimum possible fP(x0+δ)y0

given Eqn. (7)’s constraint. Concretely, we let f represent
whether the base classifier predicts label y0: f(·) = I[F (· +
x0) = y0], and accordingly impose f ∈ [0, 1] in Eqn. (8c).

Then, Eqns. (8a) and (8b) unfold fP(x0 + δ)y0
, fP(x0)y0

,
and fQ(x0)y0 respectively and impose Eqn. (7)’s constraint.

We let Cδ(PA, QA) denote the optimal value of Eqn. (8)
when feasible. Thus, under norm p, to certify the robustness
within radius r, we only need to check whether

∀δ, ∥δ∥p < r ⇒ Cδ(PA, QA) > 0.5. (9)

This formulation yields the tightest robustness certification
given information from P and Q under the binary setting.
Under the multiclass setting, there are efforts towards tighter
certification by using “> maximum over other classes” in-
stead of “> 0.5” in Eqn. (9) (Dvijotham et al., 2020). For
saving the sampling cost and also to follow the conven-
tion (Cohen et al., 2019; Yang et al., 2020; Jeong & Shin,
2020; Zhai et al., 2020), we mainly consider “> 0.5” for
multiclass setting, and extension to the other form is straight-
forward.

Since our choices of P and Q (standard/generalized (trun-
cated) Gaussian) are isotropic and centered around origin,
when certifying radius r, for ℓ2 certification we only need to
test Cδ(PA, QA) > 0.5 with δ = (r, 0, . . . , 0)T; and for
ℓ∞ we only need to divide ℓ2 radius by

√
d. This trick can

also be extended for ℓ1 case (Zhang et al., 2020a).

Directly solving (C) is challenging. Thus, we construct the
Lagrangian dual problem (D):

maximize
λ1, λ2∈R

Pr
ϵ∼P

[p(ϵ) < λ1p(ϵ+ δ) + λ2q(ϵ+ δ)] (10a)

s.t. Pr
ϵ∼P

[p(ϵ− δ) < λ1p(ϵ) + λ2q(ϵ)] = PA,

Pr
ϵ∼Q

[p(ϵ− δ) < λ1p(ϵ) + λ2q(ϵ)] = QA.
(10b)

In Eqn. (10), p(·) and q(·) are the density functions of distri-
butions P and Q respectively. We let Dδ(PA, QA) denote
the optimal objective value to Eqn. (10a) when it is feasible.

Theorem 3. For given δ ∈ Rd, PA, and QA, if C and D
are both feasible, then Cδ(PA, QA) = Dδ(PA, QA).

The theorem states the strong duality between (C) and (D).
We defer the proof to Appendix G.1. The proof is based on
min-max inequality and feasibility condition of (D). Intu-
itively, we can view (C), a functional optimization over f ,
as a linear programming (LP) problem over infinite number
of variables {f(x) : x ∈ Rd} so that the strong duality
holds, which guarantees the tightness of DSRS in the primal
space.

5.2. Dealing with Confidence Intervals

It is practically intractable to know the exact PA and QA

in Eqn. (7) by only querying the model’s prediction for
finite times. The common practice is using Monte-Carlo
sampling, which gives confidence intervals of PA and QA

with a predefined confidence level 1− α.
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Suppose we have confidence intervals [PA, PA] and
[QA, QA]. To derive a sound certification, we need to cer-
tify that for any PA ∈ [PA, PA] and any QA ∈ [QA, QA],
Cδ(PA, QA) > 0.5. Given the infinite number of possible
PA and QA, the brute-force method is intractable. Here,
without computing Cδ , we show how to solve

(PA, QA) = argmin
P ′

A∈[PA, PA],Q′
A∈[QA, QA]

Cδ(P
′
A, Q

′
A). (11)

If solved PA and QA satify Cδ(PA, QA) > 0.5, then for
any PA and QA within the confidence intervals, we can
certify the robustness against perturbation δ. We observe
the following two properties of Cδ .

Proposition 1. Cδ(·, ·) is convex in the feasible region.

Proposition 2. With respect to x ∈ [0, 1], functions x 7→
miny Cδ(x, y) and x 7→ argminy Cδ(x, y) are monotoni-
cally non-decreasing. Similarly, with respect to y ∈ [0, 1],
functions y 7→ minx Cδ(x, y) and y 7→ argminx Cδ(x, y)
are monotonically non-decreasing.

These two propositions characterize the landscape of
Cδ(·, ·)—convex and monotonically non-decreasing along
both x and y axes. Thus, desired (PA, QA) (location of
minima within the bounded box) lies on the box boundary,
and we only need to compute the location of boundary-
line-sliced minima and compare it with box constraints to
solve Eqn. (11). Formally, we propose an efficient algo-
rithm (Alg. 1, omitted to Appendix E.1) to solve (PA, QA).

Theorem 4. If Eqn. (11) is feasible, the PA and QA re-
turned by Alg. 1 solve Eqn. (11).

The above results are proved in Appendix G.2. On a high
level, we prove Proposition 1 by definition; we prove Propo-
sition 2 via a reduction to classical Neyman-Pearson-based
certification and analysis of this reduced problem; and we
prove Theorem 4 based on Propositions 1 and 2 along with
exhaustive and nontrivial analyses of all possible cases.

5.3. Solving the Dual Problem

After the smoothed prediction confidences PA and QA are
determined from the confidence intervals, now we solve
the dual problem Dδ(PA, QA) as defined in Eqn. (10). We
solve the problem based on the following theorem:
Theorem 5 (Numerical Integration for DSRS with General-
ized Gaussian Smoothing). In Dδ(PA, QA), let r = ∥δ∥2,
when P = N g(k, σ) and Q = N g

trunc(k, T, σ), let σ′ :=√
d/(d− 2k) and let ν := ΓCDFd/2−k(T

2/(2σ′2)),
R(λ1, λ2) := Pr

ϵ∼P
[p(ϵ) < λ1p(ϵ + δ) + λ2q(ϵ + δ)]

=

{
Et∼Γ(d/2−k,1)u1(t), λ1 ≤ 0
Et∼Γ(d/2−k,1)u1(t) + u2(t), λ1 > 0

where

u1(t) =BetaCDF d−1
2

min{T 2, 2σ′2kW ( t
k e

t
k (λ1 + νλ2)

1
k )}

4rσ′
√
2t

−
(σ′√2t − r)2

4rσ′
√
2t

)
,

u2(t) =max

BetaCDF d−1
2

 2σ′2kW ( t
k e

t
k λ

1
k
1 ) − (σ′√2t − r)2

4rσ′
√
2t


−BetaCDF d−1

2

(
T 2 − (σ′√2t − r)2

4rσ′
√
2t

)
, 0

}
,

P (λ1, λ2) := Pr
ϵ∼P

[p(ϵ − δ) < λ1p(ϵ) + λ2q(ϵ)]

= Et∼Γ(d/2−k,1)

{
u3(t, λ1), t ≥ T 2/(2σ′2)
u3(t, λ1 + νλ2), t < T 2/(2σ′2).

where

u3(t, λ) = BetaCDF d−1
2

 (r + σ′√2t)2

4rσ′
√
2t

−
2kσ′2W ( t

k e
t
k λ− 1

k )

4rσ′
√
2t

 ,

Q(λ1, λ2) := Pr
ϵ∼Q

[p(ϵ − δ) < λ1p(ϵ) + λ2q(ϵ)]

= νEt∼Γ(d/2−k,1)u3(t, λ1 + νλ2) · I[t ≤ T
2
/(2σ

′2
)].

In above equations, Γ(d/2−k, 1) is gamma distribution and
ΓCDFd/2−k is its CDF, BetaCDF d−1

2
is the CDF of distri-

bution Beta(d−1
2 , d−1

2 ), and W is the principal branch of
Lambert W function.

When P is standard Gaussian and Q is truncated standard
Gaussian, we derive similar expressions as detailed in Ap-
pendix H.1. We prove Theorem 5 in Appendix G.3. The
proof extends the level-set sliced integration and results
from (Yang et al., 2020). With the theorem, we can rewrite
the dual problem Dδ(PA, QA) as

max
λ1, λ2∈R

R(λ1, λ2) s.t. P (λ1, λ2) = PA, Q(λ1, λ2) = QA,

(12)
Given concrete λ1 and λ2, from the theorem, these function
values P (λ1, λ2), Q(λ1, λ2), and R(λ1, λ2) can be easily
computed with one-dimensional numerical integration using
SciPy package.

Now, solving Dδ(PA, QA) reduces to finding dual variables
λ1 and λ2 such that P (λ1, λ2) = PA and Q(λ1, λ2) = QA.
Generally, we find that there is only one unique feasible pair
(λ1, λ2) for Eqn. (12), so finding out such a pair is sufficient.
We prove the uniqueness and discuss how we deal with edge
cases where multiple feasible pairs exist in Appendix G.4.

Normally, such solving process is expensive. However, we
find a particularly efficient method to solve λ1 and λ2 and
the algorithm description is in Alg. 3 (in Appendix E.1). At
a high level, from Theorem 5, we observe that Q(λ1, λ2) is
determined only by the sum (λ1+ νλ2) and non-decreasing
w.r.t. this sum. Therefore, we apply binary search to find
out (λ1 + νλ2) that satisfies Q(λ1, λ2) = QA. Then, we
observe that

P (λ1, λ2)−
Q(λ1, λ2)

ν
=

:=h(λ1)︷ ︸︸ ︷
E

t∼Γ(d/2−k,1)
u3(t, λ1) · I

[
t ≥

T 2

2σ′2

]
.

Thus, we need to find λ1 such that h(λ1) = PA − QA/ν.
We observe that h(λ1) is non-decreasing w.r.t. λ1, and we
use binary search to solve λ1. Combining with the value of
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(λ1+νλ2), we also obtain λ2. We lastly leverage numerical
integration to compute R(λ1, λ2) following Theorem 5 to
solve the dual problem Dδ(PA, QA).

Practical Certification Soundness. As a practical cer-
tification method, we need to guarantee the certification
soundness in the presence of numerical error. In DSRS,
there are two sources of numerical error: numerical inte-
gration error when computing P (λ1, λ2), Q(λ1, λ2), and
R(λ1, λ2), and the finite precision of binary search on λ1

and λ2. For numerical integration, we notice that typical
numerical integration packages such as scipy support set-
ting an absolute error threshold ∆ and raising warnings
when such threshold cannot be reached. We set the absolute
threshold ∆ = 1.5× 10−8, and abstain when the threshold
cannot be reached (which never happens in our experimental
evaluation). Then, when computing P , Q, and R, suppose
the numerical value is v, we use the lower bound (v −∆)
and upper bound (v +∆) in the corresponding context to
guarantee the soundness. For the finite precision in binary
search, we use the left endpoint or the right endpoint of
the final binary search interval to guarantee soundness. For
example, we use the left endpoint of λ1 in R computation,
and use the left endpoint of (λ1+νλ2) minus right endpoint
of λ1 to get the lower bound of λ2 to use in R computation.
As a result, we always get an under-estimation of R so the
certification is sound. Further discussion is in Appendix E.2.

To this point, we have introduced the DSRS computational
method. Complexity and efficiency analysis is omitted to
Appendix E.3. Implementation details are in Appendix I.1.

5.4. Extensions

We mainly discussed DSRS computational method for gen-
eralized Gaussian P and truncated generalized Gaussian Q
under ℓ2 norm. Can we extend it to other settings? Indeed,
DSRS is a general framework. In appendices, we show fol-
lowing extensions: (1) DSRS for generalized Gaussian with
different variances as P and Q (in Appendix H.2); (2) DSRS
for other ℓp norms (in Appendix H.3); and (3) DSRS that
leverages other forms of additional information covering
gradient magnitude information (Mohapatra et al., 2020;
Levine et al., 2020) (in Appendix L).

6. Experimental Evaluation
In this section, we systematically evaluate DSRS and demon-
strate that it achieves tighter certification than the classi-
cal Neyman-Pearson-based certification against ℓ2 pertur-
bations on MNIST, CIFAR-10, and ImageNet. We focus
on ℓ2 certification because additive randomized smoothing
is not optimal for other norms (e.g., ℓ1 (Levine & Feizi,
2021)) or the certification can be directly translated from
ℓ2 certification (e.g., ℓ∞ (Yang et al., 2020) and semantic
transformations (Li et al., 2021)).

6.1. Experimental Setup
Smoothing Distributions. Following Theorem 2, we use
generalized Gaussian N g(k, σ) as smoothing distribution
P where d/2− 15 ≤ k < d/2. Specifically, we set k to be
d/2−12 on MNIST, d/2−6 on CIFAR-10, and d/2−4 on
ImageNet. We use three different σ’s: 0.25, 0.50, and 1.00.

In terms of the additional smoothing distribution Q, on
MNIST and CIFAR-10, we empirically find that using gener-
alized Gaussian with the same k but different variance yields
tighter robustness certification, and therefore we choose σg

to be 0.2, 0.4, and 0.8 corresponding to P’s σ being 0.25,
0.50, and 1.0, respectively. On ImageNet, the concentra-
tion property (see Definition 3) is more pronounced (detail
study in Appendix J.1) and thus we use truncated general-
ized Gaussian N g

trunc(k, T, σ) as Q. We apply a simple but
effective algorithm as explained in Appendix I to determine
hyperparameter T in N g

trunc(k, T, σ).
Models and Training. We consider three commonly-used
or state-of-the-art training methods: Gaussian augmenta-
tion (Cohen et al., 2019), Consistency (Jeong & Shin, 2020),
and SmoothMix (Jeong et al., 2021). We follow the default
model architecture on each dataset respectively. We train
the models with augmentation noise sampled from the cor-
responding generalized Gaussian smoothing distribution P .
More training details can be found in Appendix I.
Baselines. We consider the Neyman-Pearson-based certifi-
cation method as the baseline. This certification is widely
used and is the tightest given only prediction probability
under P (Cohen et al., 2019; Yang et al., 2020; Jeong &
Shin, 2020; Li et al., 2021). We remark that although there
are certification methods that leverage more information, to
the best of our knowledge, they are not visibly better than
the Neyman-Pearson-based method on ℓ2 certification un-
der practical sampling number (105). More comparisons in
Appendix J.5 show DSRS is also better than these baselines.

For both baseline and DSRS, following the convention, the
certification confidence is 1 − α = 99.9%, and we use
105 samples for estimating PA and QA. Neyman-Pearson
certification does not use the information from additional
distribution, and all 105 samples are used to estimate the
interval of PA. In DSRS, we use 5×104 samples to estimate
the interval of PA with confidence 1− α

2 = 99.95% and the
rest 5× 104 samples for QA with the same confidence. By
union bound, the whole certification confidence is 99.9%.
Metrics. We uniformly draw 1000 samples from the test set
and report certified robust accuracy (under each ℓ2 radius r)
that is the fraction of samples that are both correctly classi-
fied and have certified robust radii larger than or equal to r.
Under each radius r, we report the highest certified robust
accuracy among the three variances σ ∈ {0.25, 0.50, 1.00}
following (Cohen et al., 2019; Salman et al., 2019). We also
report evaluation results with ACR metric (Zhai et al., 2020)
in Appendix J.3.3.
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Table 2. Certified robust accuracy under different radii r with different certification approaches.

Dataset Training Certification Certified Accuracy under Radius r
Method Approach 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

MNIST

Gaussian Aug. Neyman-Pearson 97.8% 96.9% 94.6% 88.4% 78.7% 57.6% 41.0% 25.5% 13.6% 6.2% 2.1% 0.9%
(Cohen et al., 2019) DSRS 97.8% 97.0% 95.0% 89.8% 83.4% 61.6% 48.4% 34.1% 21.0% 10.6% 4.4% 1.2%

Consistency Neyman-Pearson 98.4% 97.5% 96.0% 92.3% 83.8% 67.5% 49.1% 35.6% 21.7% 10.4% 4.1% 1.9%
(Jeong & Shin, 2020) DSRS 98.4% 97.5% 96.0% 93.5% 87.1% 71.8% 55.8% 41.9% 31.4% 17.8% 8.6% 2.8%

SmoothMix Neyman-Pearson 98.6% 97.6% 96.5% 91.9% 85.1% 73.0% 51.4% 40.2% 31.5% 22.2% 12.2% 4.9%
(Jeong et al., 2021) DSRS 98.6% 97.7% 96.8% 93.4% 87.5% 76.6% 54.4% 46.2% 37.6% 29.2% 18.5% 7.2%

CIFAR-10

Gaussian Aug. Neyman-Pearson 56.1% 41.3% 27.7% 18.9% 14.9% 10.2% 7.5% 4.1% 2.0% 0.7% 0.1% 0.1%
(Cohen et al., 2019) DSRS 57.4% 42.7% 30.6% 20.6% 16.1% 12.5% 8.4% 6.4% 3.5% 1.8% 0.7% 0.1%

Consistency Neyman-Pearson 61.8% 50.9% 38.0% 32.3% 23.8% 19.0% 16.4% 13.8% 11.2% 9.0% 7.1% 5.1%
(Jeong & Shin, 2020) DSRS 62.5% 52.5% 38.7% 35.2% 28.1% 20.9% 17.6% 15.3% 13.1% 10.9% 8.9% 6.5%

SmoothMix Neyman-Pearson 63.9% 53.3% 40.2% 34.2% 26.7% 20.4% 17.0% 13.9% 10.3% 7.8% 4.9% 2.3%
(Jeong et al., 2021) DSRS 64.7% 55.5% 42.1% 35.9% 29.4% 22.1% 18.7% 16.1% 13.2% 10.2% 7.1% 3.9%

ImageNet

Guassian Aug. Neyman-Pearson 57.1% 47.0% 39.3% 33.2% 24.8% 21.4% 17.6% 13.7% 10.2% 7.8% 5.7% 3.6%
(Cohen et al., 2019) DSRS 58.4% 48.4% 41.4% 35.3% 28.8% 23.3% 21.3% 18.7% 14.2% 11.0% 9.0% 5.7%

Consistency Neyman-Pearson 59.8% 49.8% 43.3% 36.8% 31.4% 25.6% 22.1% 19.1% 16.1% 14.0% 10.6% 8.5%
(Jeong & Shin, 2020) DSRS 60.4% 52.4% 44.7% 39.3% 34.8% 28.1% 25.4% 22.6% 19.6% 17.4% 14.1% 10.4%

SmoothMix Neyman-Pearson 46.7% 38.2% 28.8% 24.6% 18.1% 14.2% 11.8% 10.1% 8.9% 7.2% 6.0% 4.6%
(Jeong et al., 2021) DSRS 47.4% 40.0% 30.3% 26.8% 21.6% 15.7% 14.0% 12.1% 9.9% 8.4% 7.2% 5.3%

6.2. Evaluation Results
We show results in Table 2. The corresponding curves and
separated tables for each variance σ are in Appendix J.3.

For almost all models and radii r, DSRS yields signifi-
cantly higher certified accuracy. For example, for Gaus-
sian augmented models, when r = 2.0, on MNIST the ro-
bust accuracy increases from 25.5% to 34.1% (+8.6%), on
CIFAR-10 from 4.1% to 6.4% (+2.3%), and on ImageNet
from 13.7% to 18.7% (+5.0%). On average, on MNIST
the improvements are around 6% - 9%; on CIFAR-10, the
improvements are around 1.5% - 3%; and on ImageNet the
improvements are around 2% - 5%. Thus, DSRS can be
used in conjunction with different training approaches and
provides consistently tighter robustness certification.

The improvements in the robust radius are not as substantial
as those in Figure 2(b) (which is around 2×). We investi-
gate the reason in Appendix J.1. In summary, the model
in Figure 2(b) is trained with standard Gaussian smoothing
augmentation and smoothed with generalized Gaussian. The
models in this section are trained with generalized Gaussian
augmentation. Such training gives higher certified robust-
ness, but in the meantime, gives more advantage to Neyman-
Pearson-based certification. This finding implies that there
may be a large space for exploring training approaches that
favor DSRS certification since all existing training meth-
ods are designed for Neyman-Pearson-based certification.
Nevertheless, even with these “unsuitable” training meth-
ods, DSRS still achieves significantly tighter robustness
certification than the baseline.

On the other hand, all the above results are restricted to
generalized Gaussian smoothing. We still observe that stan-
dard Gaussian smoothing combined with strong training
methods (Salman et al., 2019; Jeong & Shin, 2020) and
Neyman-Pearson certification (the SOTA setting) yields
similar or slightly higher certified robust accuracy than
generalized Gaussian smoothing even with DSRS certifica-

tion. Though DSRS with its suitable generalized Gaussian
smoothing does not achieve SOTA certified robustness yet,
given the theoretical advantages, we believe that with future
tailored training approaches, DSRS with generalized Gaus-
sian smoothing can bring strong certified robustness. More
discussion is in Appendix L.3.

Ablation Studies. We present several ablation studies in the
appendix. and verify: (1) Effectiveness of our simple heuris-
tic for selecting hyperparameter for Q: We propose a simple
heuristic to select the hyperparameter T in smoothing distri-
bution Q = N g

trunc(k, T, σ). In Appendix J.2, we propose a
gradient-based optimization method to select such Q. We
find that our simple heuristic has similar performance com-
pared to the more complex optimization method but is more
efficient. (2) Comparison of different types of Q: by choos-
ing different types of Q distributions (truncated Gaussian
or Gaussian with different variance), DSRS has different
performance as mentioned in Section 6.1. In Appendix J.4,
we investigate the reason. In summary, when concentration
property (see Definition 3) is better satisfied, using trun-
cated Gaussian as Q is better; otherwise, using Gaussian
with different variance is better.

7. Conclusion
We propose a general DSRS framework that exploits in-
formation based on an additional smoothing distribution to
tighten the robustness certification. We theoretically analyze
and compare classical Neyman-Pearson and DSRS certifica-
tion, showing that DSRS has the potential to break the curse
of dimensionality of randomized smoothing.
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A. Neyman-Pearson Certification
The Neyman-Pearson-based robustness certification is the
tightest certification given only prediction probability under
P (Cohen et al., 2019). This certification and its equivalent
variants are widely used for randomized smoothing. We
use rN−P to represent the certified radius from the Neyman-
Pearson-based method.

If the smoothing distribution P is standard Gaussian, the
following proposition gives the closed-form certified robust
radius derived from the Neyman-Pearson lemma (Neyman
& Pearson, 1933).

Proposition 3 ((Cohen et al., 2019)). Under ℓ2 norm, given
input x0 ∈ Rd with true label y0. Let P = N (σ) be the
smoothing distribution, then Neyman-Pearson-based certi-
fication yields certified radius rN−P = σΦ−1(fP(x0)y0

),
where Φ−1 is the inverse CDF of unit-variance Gaussian.

For other smoothing distributions, the concretization of the
Neyman-Pearson certification method can be found in (Yang
et al., 2020).
Remark. In practice, the routine is to use Monte-Carlo
sampling to obtain a high-confidence interval of fP(x0)y0

,
which implies a high-confidence certification (rN−P) of
robust radius. A tighter radius can be obtained when
the runner-up prediction probability is known: r′N−P =
σ
2

(
Φ−1(fP(x0)y0

)−maxy∈[C]:y ̸=y0
Φ−1(fP(x0)y)

)
.

However, due to efficiency concern (for C-way classifica-
tion the sampling number needs to be more than C times if
using r′N−P for certification instead of rN−P), the standard
routine is to only use top-class probability and rN−P (Cohen
et al., 2019, Section 3.2.2). DSRS follows this routine.

B. Illustration of Concentration Assumption
on ImageNet
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Figure 4. Blue curves: Probability of true-prediction w.r.t. ℓ2
length of perturbations for a base classifier from (Salman et al.,
2019) on ImageNet. Each line corresponds to one of 100 uniformly
drawn samples from test set (detailed setup in Appendix J.1).
Green curve: Normalized density of ℓ2 noise magnitude for Ima-
geNet standard GaussianN (σ) with σ = 0.5, which highly con-
centrates on σ

√
d. Thus, for constant Pcon, (σ, Pcon)-concentration

can be satisfied for a significant portion of input samples.

C. Illustration of Unchanged PA with
Increasing d

In the first remark of Theorem 2, we mention that PA =
fP(x0)y0

does not grow simultaneously along with the in-
crease of input dimension d. In Figure 5, to illustrate this
phenomenon, we plot PA histograms for 1, 000 test samples
from TinyImageNet and ImageNet. Note that TinyImageNet
images are downscaled ImageNet images, so the data dis-
tribution only differs in the input dimension d. As we can
observe, though d varies, the PA distribution is highly simi-
lar, so PA is roughly unchanged along with the increase of
input dimension d.
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Figure 5. PA histograms for models trained on TinyImageNet (left)
and ImageNet (right) with same σ = 0.50.

D. DSRS under Relaxed Concentration
Assumption

In main text (Section 4), we generalize the concentration as-
sumption by replacing the holding probability 1 in Eqn. (5a)
by probability considering sampling confidence. In this ap-
pendix, we replace the holding probability in Eqn. (5a) by
exp(−dα) for α ∈ {0.1, 0.2, 0.3, 0.4, 0, 5}.

With this relaxation, we conduct numerical simulations us-
ing the same settings as in the main text, and the corre-
sponding results are shown in Figure 6. Note that some
solid curves terminate when d is large, which is due to the
limitation of floating-point precision in numerical simula-
tions, and we use dashed lines of the same color to plot the
projected radius when d is large.

Remark. When the concentration property holds with probabil-
ity exp(−dα) (0 < α ≤ 0.5) other than 1, from Figure 6, we
observe that rN−Pd

α/1.18 predicts the certified radius of DSRS
well where rN−P is Neyman-Pearson certified radius. There-
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Figure 6. Tendency of DSRS certified robust radius with different
input dimensions d under relaxed concentration assumption: when
holding probability in Eqn. (5a) is exp(−dα) with α from 0.1 to
0.5;. Blue line: DSRS when holding probability in Eqn. (5a) is
1. Dotted line: Neyman-Pearson certification. Other solid lines:
DSRS when holding probability in Eqn. (5a) is exp(−dα). Other
dashed lines: DSRS projected radius by rproj

DSRS = rN−Pd
α/1.18.

α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Both x- and y-axes are logarithmic.

fore, although the
√
d growth rate of ℓ2 certified radius does

not hold, the radius still increases along with the dimension d.
Interestingly, along with the increase of dimension d, the van-
ishing probability exp(−dα) still implies the increasing volume
of adversarial examples, and smoothed classifier is still certifi-
ably robust with increasing radius reflected by DSRS despite the
increasing adversarial volume.

E. Omitted Details of DSRS Computational
Method

E.1. Algorithm Description

Algorithm 1 Determining PA and QA from confi-
dence intervals (see §5.2).
Data: Distributions P andQ; δ; [PA, PA] and [QA, QA]
Result: PA and QA satisfying Eqn. (11)

1 Compute q ← argminy Cδ(PA, y)

2 if q > QA then
3 return (PA, min{q, QA})
4 else
5 Compute p← argminx Cδ(x, QA)

6 return (max{min{p, PA}, PA}, QA)

Alg. 1 is a subroutine (Line 7) of Alg. 2. Note that Lines 1
and 5 of Alg. 1 solve the constrained optimization with only
one constraint (either one of Eqn. (8b)), reducing to the well-
studied and solvable Neyman-Pearson-based certification.

Note that we do not need to evaluate any value of Cδ in
Alg. 1. Although q and p in the algorithm are “argminx or y”
over Cδ , the free choices of x or y leave Cδ’s constrained
optimization with only one constraint and then q and p can
be solved by Neyman-Pearson instead of evaluating Cδ

directly.

Algorithm 2 DSRS computational method.
Data: clean input x0, base classifier F0; distributions P and Q;

norm type p; confidence level α; numerical integration error
bound ∆

Result: Certified radius r
1 Query prediction y0 ← F̃P

0 (x0)
2 Sample and estimate the intervals of smoothed confidence

[PA, PA] underP and [QA, QA] underQwith confidence (1−α)
following (Cohen et al., 2019)

3 Initialize: rl ← 0, ru ← rmax

4 while ru − rl > eps do /* Binary search on radius r */
5 rm ← (rl + ru)/2

6 δ ← (rm, 0, . . . , 0)T ; /* for ℓ2 certification with ℓ2
symmetric P andQ; for ℓ∞ or ℓ1, can be adjusted following
(Zhang et al., 2020a) */

7 Determine PA ∈ [PA, PA] and QA ∈ [QA, QA] ; /* See
Section 5.2 and Alg. 1 */

8 (λ1, λ2)← DUALBINARYSEARCH(PA, QA) ; /* See
Section 5.3 and Alg. 3 */

9 v ← R(λ1, λ2)−∆ ; /* Using Theorem 5 */
10 if v > 0.5 then
11 rl ← rm
12 else
13 ru ← rm

14 return rl

Alg. 2 is the pseudocode of the whole DSRS computational
method as introduced in Section 5.
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Algorithm 3 DUALBINARYSEARCH for λ1 and λ2.
Data: Query access to P (·, ·) and Q(·, ·); PA; QA; ν;

precision parameter ϵ; numerical integration error
bound ∆

Result: λ1 and λ2 satisfying constraints P (λ1, λ2) =
PA, Q(λ1, λ2) = QA (see Eqn. (12))

1 aL ← 0, aU ←M ; /* search for a = λ1 + νλ2, M is a
large positive number */

2 while aU − aL > ϵ do
3 am ← (aL + aU )/2
4 if Q(am, 0) < QA then
5 aL ← am

6 else
7 aU ← am

8 end
/* Following while-loop enlarges aL and aU until [aL, aU ]

covers a∗ such that Q(a∗, 0) = QA under numerical
integration error */

9 while (Q(aL, 0) + ∆ > QA) or (Q(aU , 0)−∆ < QA)
do

10 t← aU − aL

11 aL ← aL − t/2

12 aU ← aU + t/2
13 end
14 λL

1 ← 0, λU
1 ←M ; /* search for λ1, M is a large positive

number */
15 while λU

1 − λL
1 > ϵ do

16 λm
1 ← (λL

1 + λU
1 )/2

17 if h(λm
1 )−∆ < PA −QA/ν then

18 λL
1 ← λm

1

19 else
20 λU

1 ← λm
1

21 end
/* Following while-loop enlarges λL

1 and λU
1 until [λL

1 , λ
U
1 ]

covers λ∗
1 such that h(λ∗

1) = PA −QA/ν under numeri-
cal integration error */

22 while (h(λL
1 ) + ∆ > PA − QA/ν) or (h(λU

1 ) − ∆ <
PA −QA/ν) do

23 t← λU
1 − λL

1

24 λL
1 ← λL

1 − t/2

25 λU
1 ← λU

1 + t/2
26 end
27 return (λL

1 , (a
L − λU

1 )/ν) ; /* for soundness, choose the
left endpoint of λ1 and λ2 range */

Alg. 3 is the dual variable search algorithm described in
Section 5.3. From Line 1 to 8, we conduct binary search
for quantity λ1 + νλ2; from Line 14 to 21, we conduct
binary search for quantity λ1. Notice that our binary search
interval is initialized to be the non-negative interval. This
is because Q(am, 0) = 0 and h(λm

1 ) = 0 if am and λm
1 are

non-positive observed from Theorem 5.

E.2. Guaranteeing Numerical Soundness

In DSRS computational method, to compute a practically
sound robustness guarantee, we take the binary search error

and numerical integration error into consideration.

Specifically, in Alg. 3, we return a pair (λ′
1, λ

′
2) whose

R(λ′
1, λ

′
2) lower bounds R(λ1, λ2) where (λ1, λ2) is the

precise feasible pair. We achieve so by returning (λL
1 , (a

L−
λU
1 )/ν). Specifically, as we can see aL is an underestima-

tion of actual (λ1 + νλ2) in the presence of binary search
error and numerical integration error. We bound the nu-
merical integration error by setting absolute error bound
∆ = 1.5 × 10−8 in scipy.integrad.quad function.
Then, λL

1 and λU
1 are underestimation and overestimation

of the actual λ1 in the presence of errors respectively. As a
result, (aL − λU

1 )/ν is an underestimation of λ2. Therefore,
both λ1 and λ2 are underestimated and by the monotonicity
of R(·, ·), the actual R(λ1, λ2) would be underestimated to
guarantee the soundness.

Then, since the evaluation of R involves numerical integra-
tion, we compare the lower bound of R: R(λ1, λ2) − ∆
in Alg. 2 (line 9) with 0.5 to determine whether current
robustness radius can be certified or not.

E.3. Complexity and Efficiency Analysis

In this appendix, we briefly analyze the computational com-
plexity of DSRS computational method introduced in Sec-
tion 5. Suppose the binary search precision is ϵ, and each
numerical integration costs C time. First, the search of cer-
tified robust radius costs O(log(

√
d/ϵ)). For each searched

radius, we first determine PA and QA by running Neyman-
Pearson-based certification, which has cost O(log(1/ϵ)C).
Then, solving dual variables takes two binary search rounds,
which has cost O(log(1/ϵ)C). The final one-time integra-
tion of R(λ1, λ2) has cost O(C). Thus, overall time com-
plexity is O(log(

√
d/ϵ) log(1/ϵ)C), which is the same as

classical Neyman-Pearson certification and grows slowly (in
logarithmic factor) w.r.t. input dimension d.

In practice, the certification time is on average 5 s to 10 s
per sample across different datasets. For example, with
σ = 0.50 as the smoothing variance parameter, the certifica-
tion time, as an overhead over Neyman-Pearson-based certi-
fication, is 10.53 s, 4.53 s, and 3.21 s on MNIST, CIFAR-10,
and ImageNet respectively. This overhead is almost negligi-
ble compared with the sampling time for estimating PA and
QA which is around 200 s on ImageNet and is the shared
cost of all randomized smoothing certification methods. In
summary, compared with standard Neyman-Pearson-based
certification, the running time of DSRS is roughly the same.

F. Extensions and Proofs in Section 4
In this appendix, we provide formal proofs and theoretical
extensions for the results in Section 4.
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F.1. Proof of Theorem 1

Proof of Theorem 1. We let Dc denote the decision region
of F0 for class c, i.e., Dc := {x : F0(x) = c}. Since Q is
supported on the decision region shifted by x0, fQ

0 (x0)c =
1. Thus, from fQ

0 (x0)c, we know (supp(Q)+x0)\S ⊆ Dc,
where S is some set with zero measure under Q+x0. Since
0 < q(x)/p(x) < +∞, S also has zero measure under
P + x0. On the other hand, by 0 < q(x)/p(x) < +∞, we
can determine the probability mass of supp(Q) on P , i.e.,
Prϵ∼P [ϵ ∈ supp(Q)]. Then, we observe that

fP
0 (x0)c = Pr

ϵ∼P
[F0(x0 + ϵ) = c]

= Pr
ϵ∼P

[ϵ ∈ Rd \ supp(Q)]

· Pr
ϵ∼P

[F0(x0 + ϵ) = c | ϵ ∈ Rd \ supp(Q)]

+ Pr
ϵ∼P

[ϵ ∈ supp(Q)] · Pr
ϵ∼P

[F0(x0 + ϵ) = c | ϵ ∈ supp(Q)]

= Pr
ϵ∼P

[ϵ ∈ Rd \ supp(Q)]

· Pr
ϵ∼P

[F0(x0 + ϵ) = c | ϵ ∈ Rd \ supp(Q)]

+ Pr
ϵ∼P

[ϵ ∈ supp(Q)].

By the definition of supp(Q), we observe that
Prϵ∼P [F0(x0 + ϵ) = c | ϵ ∈ Rd \ supp(Q)] = 0. As a
result, we will find that fP

0 (x0)c = Prϵ∼P [ϵ ∈ supp(Q)].
Then the DSRS certification method can know((
Rd \ supp(Q)

)
+ x0

)
∩ Dc has zero measure un-

der P + x0, i.e., In summary, the certification method can
determine that supp(Q) + x0 differs from Dc on some
set ∆ with zero measure under P + x0. Because P has
positive density everywhere, ∆ also has zero measure
under P + x0 + δ for arbitrary δ ∈ Rd. Thus, for arbitrary
δ ∈ Rd, the certification method can compute out

fP
0 (x0 + δ)c = Pr

ϵ∼P
[F0(x0 + δ + ϵ) = c] (13)

= Pr
ϵ∼P+δ

[x0 + ϵ ∈ Dc] = Pr
ϵ∼P+δ

[supp(Q)].

Under the binary classification setting, it implies that for
any δ ∈ Rd, the fP

0 (x0+δ) can be uniquely determined by
DSRS certification method. Since the smoothed classifier’s
decision at any x0 + δ is uniquely determiend by fP

0 (x0 +
δ) (see Eqn. (2)), the certification method can exactly know
F̃P
0 (x+ δ) for any δ and thus determine tightest possible

certified robust radius rtight.

F.2. Extending Theorem 1 to Multiclass Setting

For the multiclass setting, we define a variant of DSRS as
follows.

Definition 4 (rmulti
DSRS). Given PA ∈ [0, 1] and Qmulti

A ∈
RC−1,

rmulti
DSRS := max r s.t.

∀F : R→ [C], fP(x0)y0 = PA,

fQc(x0)c = (Qmulti
A )c, c ∈ [C − 1]

⇒∀x, ∥x− x0∥p < r, F̃P(x) = y0.

(14)

In the above definition, rmulti
DSRS is the tightest possible certi-

fied radius with prediction probability Qmulti
A , where each

component of Qmulti
A , namely (Qmulti

A )c, corresponds to the
prediction probability for label c under additional smooth-
ing distribution Qc. Note that there are (C − 1) additional
smoothing distributions {Qc}C−1

c=1 in this generalization for
multiclass setting.

With this DSRS generation, the following corollary extends
the tightness analysis in Theorem 1 from binary to the mul-
ticlass setting.

Corollary 1. Suppose the original smoothing distribution
P has positive density everywhere, i.e., p(·) > 0. For multi-
class classification with base classifier F0, at point x0 ∈ Rd,
for each class c ∈ [C − 1], let Qc be a distribution that
satisfies: (1) its support is the decision region of c shifted
by x0: supp(Qc) = {x − x0 : F0(x) = c}; (2) for any
x ∈ supp(Q), 0 < qc(x)/p(x) < +∞. Then, plugging
PA = fP

0 (x0)c and Qmulti
A where (Qmulti

A )c = fQc
0 (x0)c

for c ∈ [C − 1] into Definition 4, we have rmulti
DSRS = rtight

under any ℓp (p ≥ 1).

Proof of Corollary 1. Similar as the proof of Theorem 1,
the certification method can observe that for any c ∈ [C−1],
fQc
0 (x0)c = 1. Thus, the method knows supp(Qc)+x0 ≈
Dc for arbitrary c ∈ [C − 1]. Here, the “≈” means that the
difference between the two sets has zero measure under P +
x0. Thus, for arbitrary δ ∈ Rd the certification method can
precisely compute out fP(x0)c for any c ∈ [C − 1]. Since
fP(x0) ∈ ∆C , we also know fP(x0)C and the smoothed
classifier’s prediction on x0+δ can be uniquely determined.
Then, following the same argument in Theorem 1’s proof,
we can determine the tightest possible certified robust radius
rmulti
DSRS.

Remark. To achieve the tightest possible certified radius
rtight, for binary classification, we only need one extra scalar
as the additional information (QA), while for multiclass clas-
sification, we need (C − 1) extra scalars as the additional
information (Qmulti

A ∈ RC−1). Following the convention as
discussed in Appendix A, we are interested in tight certifica-
tion under the binary classification for sampling efficiency
concerns. Therefore, we focus on using only one extra
scalar (QA) to additional information in DSRS. In both
Theorem 1 and Corollary 1, we only need finite quantities
to achieve tight certification for any smoothed classifier.
In contrast, other existing work requires infinite quantities
to achieve such optimal tightness (Mohapatra et al., 2020,
Section 3.1).
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F.3. Proof of Theorem 2

The proof of Theorem 2 is a bit complicated, which relies
on several propositions and lemmas along with theoreti-
cal results in Section 5. At high level, based on the stan-
dard Gaussian distribution’s property (Proposition F.1), we
find QA = 1 under concentration property (Lemma F.2).
With QA = 1, we derive a lower bound of rDSRS in
Lemma F.3. We then use: (1) the concentration of beta
distribution Beta(d−1

2 , d−1
2 ) (see Lemma F.4) for large d;

(2) the relative concentration of gamma Γ(d/2, 1) distri-
bution around mean for large d (see Proposition F.5 and
resulting Fact F.7); and (3) the misalignment of gamma
distribution Γ(d/2 − k, 1)’s mean and median for small
(d/2 − k) (see Proposition F.6) to lower bound the quan-
tity in Lemma F.3 and show it is large or equal to 0.5.
Then, using the conclusion in Section 5 we conclude that
rDSRS ≥ 0.02σ

√
d.

Proposition F.1. If random vector ϵ ∈ Rd follows standard
Gaussian distribution N (σ), then

Pr[∥ϵ∥2 ≤ T ] = ΓCDFd/2

(
T 2

2σ2

)
, (15)

where ΓCDFd/2 is the CDF of gamma distribution
Γ(d/2, 1).

Proof of Proposition F.1. According to (Lozier, 2003, Eqn.
5.19.4), he volume of a d-dimensional ball, i.e., d-ball, with
radius r is Vd(r) =

πd/2

Γ( d
2+1)

rd. Thus,

Vol({ϵ : ∥ϵ∥2 = r}) = Vd(r)
′ =

dπd/2

Γ(d2 + 1)
rd−1. (16)

Pr[∥ϵ∥2 ≤ T ]

=

∫ T

0

1

(2πσ2)d/2
· exp

(
− r2

2σ2

)
·Vol({ϵ : ∥ϵ∥2 = r})dr

=

∫ T

0

1

(2πσ2)d/2
· exp

(
− r2

2σ2

)
· dπd/2

Γ(d2 + 1)
rd−1dr

=

∫ T 2

0

1

(2σ2)d/2Γ(d2 )
exp

(
− r

2σ2

)
rd/2−1dr

=
1

Γ(d2 )

∫ T2

2σ2

0

exp(−r)rd/2−1dr = ΓCDFd/2

(
T 2

2σ2

)
.

With Proposition F.1, now we can show that QA = 1 under
the condition of Theorem 2 as stated in the following lemma.

Lemma F.2. Suppose F0 satisfies (σ, Pcon)-concentration
property at input point x0 ∈ Rd, with additional smooth-
ing distribution Q = N g

trunc(k, T, σ) where T 2 =

2σ2ΓCDF−1
d/2(Pcon) and d/2 − 15 ≤ k < d/2, we have

QA = Pr
ϵ∼Q

[F0(x0 + ϵ) = y0] = 1. (17)

Proof of Lemma F.2. According to Definition 3, for T ′ that
satisfies

Pr
ϵ∼N (σ)

[∥ϵ∥2 ≤ T ′] = Pcon (18)

we have

Pr
ϵ∼N (σ)

[F0(x0 + ϵ) = y0 | ∥ϵ∥2 ≤ T ′] = 1. (19)

With Eqn. (18), from Proposition F.1, we have

T ′2 = 2σ2ΓCDF−1
d/2(Pcon). (20)

Thus, Eqn. (19) implies

Pr
ϵ∼N (σ)

[F0(x0 + ϵ) = y0 | ∥ϵ∥2 ≤
√

2σ2ΓCDF−1
d/2(Pcon)] = 1.

(21)
Notice that N (σ) has finite and positive density anywhere
within {ϵ : ∥ϵ∥2 ≤ T ′}. Thus, F0(x0 + ϵ) = y0 for any ϵ
with ∥ϵ∥2 ≤ T ′ unless a zero-measure set.

Now, we consider Q. Q = N g
trunc(k, T, σ) where T = T ′,

and Ntrunc has finite and positive density anywhere within
{ϵ : ∥ϵ∥2 ≤ T ′} \ {0}. Thus,

QA = Pr
ϵ∼N g

trunc(k,T,σ)
[F0(x0 + ϵ) = y0]

= Pr
ϵ∼N g(k,σ)

[F0(x0 + ϵ) = y0 | ∥ϵ∥2 ≤ T ]

(∗)
= Pr

ϵ∼N g(k,σ)
[F0(x0 + ϵ) = y0 | ∥ϵ∥2 ≤ T, ϵ ̸= 0]

=1.

In the above equations, (∗) is because

Pr
ϵ∼N g(k,σ)

[ϵ = 0 | ∥ϵ∥2 ≤ T ]

≤ lim
r→0

Pr
ϵ∼N g(k,σ)

[∥ϵ∥2 ≤ r | ∥ϵ∥2 ≤ T ]

= lim
r→0

C

∫ r

0

x−2k exp

(
− x2

2σ′2

)
dxd−1dx

=C lim
r→0

∫ r

0

dxd−2k−1 exp

(
− x2

2σ′2

)
dx = 0

where C is a constant, and the last equality is due to d/2 >
k ⇒ d− 2k − 1 ≥ 0.

With QA = 1, we can have a lower bound of rDSRS as stated
in the following lemma.
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Lemma F.3. Under the same condition as in Lemma F.2,
we let BetaCDF d−1

2
be the CDF of distributon

Beta(d−1
2 , d−1

2 ), let

r0 = maxu

s.t.Et∼Γ( d
2−k)BetaCDF d−1

2

(
T 2 − (σ′√2t− u)2

4uσ′
√
2t

)
≥ 0.5,

(22)
and let rDSRS be the tightest possible certified radius in
DSRS under ℓ2 when smoothing distribution P = N g(k, σ),
then

rDSRS ≥ r0. (23)

Proof of Lemma F.3. The proof shares the same core
methodology as DSRS computational method introduced
in Section 5. Basically, according to Eqn. (9), for any ra-
dius r, let δ = (r, 0, . . . , 0)T, if Cδ(PA, QA) > 0.5, then
rDSRS ≥ r, where QA = 1 according to Lemma F.2, and by
the (σ, Pcon)-concentration property

PA ≥ Pr
ϵ∼N g(k,σ)

[∥ϵ∥2 ≤ T ]. (24)

Therefore, to prove the lemma, we only need to show that
when

Et∼Γ( d
2−k)BetaCDF d−1

2

(
T 2 − (σ′√2t− u)2

4uσ′
√
2t

)
≥ 0.5,

(25)
for any δ = (u, 0, . . . , 0)T, Cδ(PA, QA) > 0.5.

By definition (Eqn. (8)),

Cδ(PA, QA)

=min
f

Eϵ∼P [f(ϵ+ δ)] s.t.

Eϵ∼P [f(ϵ)] = PA,Eϵ∼Q[f(ϵ)] = QA,

0 ≤ f(ϵ) ≤ 1 ∀ϵ ∈ Rd

≥min
f

Eϵ∼P [f(ϵ+ δ)] s.t.

Eϵ∼Q[f(ϵ)] = 1,

0 ≤ f(ϵ) ≤ 1 ∀ϵ ∈ Rd

=Eϵ∼P [f(ϵ+ δ)] where f(ϵ) =

{
1, ∥ϵ∥2 ≤ T
0. ∥ϵ∥2 > T

=:V.

We now compute V :

V =Eϵ∼P [∥ϵ+ δ∥2 ≤ T ]

=

∫
Rd

p(x)I[∥x+ δ∥2 ≤ T ]dx

(1)
=

∫ ∞

0

ydy

∫
p(x)=y

I[∥x+δ∥2≤T

dx

∥∇p(x)∥2

(2)
=

∫ ∞

0

ydy

∫
p(x)=y

I[∥x+δ∥2≤T

− dx

r′p(r
−1
p (y))

(3)
=

∫ ∞

0

ydy
2πd/2

Γ(d2 )
r−1
p (y)d−1 ·

(
− 1

r′p(r
−1
p (y))

)
·

Pr[∥x+ δ∥2 ≤ T | p(x) = y]

(4)
=

∫ ∞

0

rp(t)dt
2πd/2

Γ(d2 )
td−1 Pr[∥x+ δ∥2 ≤ T | ∥x∥2 = t]

(5)
=

∫ ∞

0

1

(2σ′2)d/2−kπd/2
· Γ(d/2)

Γ(d/2− k)
t−2k exp

(
− t2

2σ′2

)
·

2πd/2

Γ(d2 )
td−1 Pr[∥x+ δ∥2 ≤ T | ∥x∥2 = t]dt

=
1

Γ(d2 − k)

∫ ∞

0

td/2−k−1 exp(−t)·

Pr[∥x+ δ∥2 ≤ T | ∥x∥2 = σ′√2t]dt

=Et∼Γ( d
2−k) Pr[∥x+ δ∥2 ≤ T | ∥x∥2 = σ′√2t].

In above equations, (1) follows from level-set sliced inte-
gration extended from (Yang et al., 2020) and p(x) is the
density of distribution P = N g(k, σ) at point x; in (2) we
define rp(∥x∥2) := p(x) noting that P is ℓ2 symmetric and
all x with same ℓ2 length having the same p(x), and we
have ∥∇p(x)∥2 = −r′p(r

−1
p (y)) since y = rp(∥x∥2) and

rp is monotonically decreasing; (3) uses

Vol({x : p(x) = y}) = Vol({x : ∥x∥2 = r−1
p (y)})

=
2πd/2

Γ(d2 )
r−1
p (y)d−1;

(26)
(4) changes the integration variable from y to t = r−1

p (y);
and (5) injects the concrete expression of rp.

Now, we inspect Pr[∥x+δ∥2 ≤ T | ∥x∥2 = σ′√2t]: When
∥x∥2 = σ′√2t,

∑d
i=1 x

2
i = 2tσ′2. Meanwhile, ∥x+δ∥2 ≤

T means (x1 + u)2 +
∑d

i=2 x
2
i ≤ T 2. Thus, when ∥x∥2 =

σ′√2t,

∥x+ δ∥2 ≤ T ⇐⇒ x1

σ′
√
2t

≤ T 2 − u2 − 2tσ′2

2uσ′
√
2t

. (27)

According to (Yang et al., 2020, Lemma I.23), for x uni-
formly sampled from sphere with radius σ′√2t, the compo-

nent coordinate
1 + x1

σ′
√
2t

2
∼ Beta(d−1

2 , d−1
2 ). Thus,

Pr[∥x+ δ∥2 ≤ T | ∥x∥2 = σ′√2t]

=BetaCDF d−1
2

1 + T 2−u2−2tσ′2

2uσ′
√
2t

2


=BetaCDF d−1

2

(
T 2 − (σ′√2t− u)2

4uσ′
√
2t

)
. (28)
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Finally, we get

V = Et∼Γ( d
2−k,1)BetaCDF d−1

2

(
T 2 − (σ′√2t− u)2

4uσ′
√
2t

)
.

(29)
In other words, when

Et∼Γ( d
2−k,1)BetaCDF d−1

2

(
T 2 − (σ′√2t− u)2

4uσ′
√
2t

)
≥ 0.5,

(30)
we have V ≥ 0.5, and thus Cδ(PA, QA) ≥ V ≥ 0.5,
rDSRS ≥ u, which concludes the proof.

We require the following property of BetaCDF.

Lemma F.4. There exists d0 ∈ N+, for any d ≥ d0,

BetaCDF d−1
2
(0.6) ≥ 0.999. (31)

Proof of Lemma F.4. We let v ∼ Beta(d−1
2 , d−2

2 ), then

E[v] = 1/2, (32)

Var[v] =
(d−1

2 )2

(d−1
2 + d−1

2 )2(d−1
2 + d−1

2 + 1)
=

1

4d
. (33)

Now, applying Chebyshev’s inequality, we have

Pr[|v − 0.5| ≥ 0.1] ≤ 1

0.04d
. (34)

Therefore,

BetaCDF d−1
2
(0.6) (35)

=Pr[v < 0.6] (36)
=1− Pr[v ≥ 0.6] (37)

≥1− Pr[|v − 0.5| ≥ 0.1] ≥ 1− 1

0.04d
. (38)

Thus, when d ≥ 25000, BetaCDF d−1
2
(0.6) ≥ 0.999.

We also require the following properties of the gamma dis-
tribution.

Proposition F.5. For any Pcon ∈ (0, 1), there exists d0 ∈
N+, for any d ≥ d0,

ΓCDF−1
d/2(Pcon) ≥ 0.99 · d

2
. (39)

Proof of Proposition F.5. We let v ∼ Γ(d/2), then

E[v] = d/2, (40)
Var[v] = d/2. (41)

We now apply Chebyshev’s inequality and get

Pr[v < 0.99 · d/2]

≤Pr[|v − d/2| > 0.01 · d/2]

≤20000

d
.

Thus, for any Pcon ∈ (0, 1), when d ≥ 20000

Pcon
,

ΓCDFd/2

(
0.99 · d

2

)
≤ 20000

d
≤ Pcon, (42)

i.e., ΓCDF−1
d/2(Pcon) ≥ 0.99 · d

2 .

Proposition F.6. When d/2− 15 ≤ k < d/2, k, d ∈ N+,

Pr
t∼Γ(d/2−k)

[
t ≤ 0.98

(
d

2
− k

)]
≥ 0.5

0.999
. (43)

Proof of Proposition F.6. We prove the proposition by enu-
meration. Notice that d/2− k ∈ {0.5, 1.0, · · · , 14.5, 15.0},
we enumerate ΓCDFd/2−k(0.98(d/2 − k)) for
each (d/2 − k) and get the following table.

d
2 − k ΓCDFd/2−k(0.98(d/2− k)) d

2 − k ΓCDFd/2−k(0.98(d/2− k))

0.5 0.6778 8.0 0.5245
1.0 0.6247 8.5 0.5224
1.5 0.5990 9.0 0.5204
2.0 0.5831 9.5 0.5186
2.5 0.5718 10.0 0.5168
3.0 0.5632 10.5 0.5152
3.5 0.5564 11.0 0.5136
4.0 0.5507 11.5 0.5121
4.5 0.5459 12.0 0.5107
5.0 0.5418 12.5 0.5093
5.5 0.5381 13.0 0.5080
6.0 0.5349 13.5 0.5068
6.5 0.5319 14.0 0.5056
7.0 0.5292 14.5 0.5044
7.5 0.5268 15.0 0.5033

On the other hand, 0.5
0.999 ≤ 0.5001, which concludes the

proof.

Now we are ready to prove the main theorem.

Proof of Theorem 2. According to Lemma F.3, we only
need to show that for u = 0.02σ

√
d, Eqn. (22) holds. For

sufficiently large d, indeed,

Et∼Γ(d/2−k)BetaCDF(d−1)/2

(
T 2 − (σ′√2t− u)2

4uσ′
√
2t

)
Lemma F.4

≥ 0.999Et∼Γ(d/2−k)I

[
T 2 − (σ′√2t− u)2

4uσ′
√
2t

≥ 0.6

]
(∗)
≥ 0.999Et∼Γ(d/2−k)I

[
t ≤ 0.98

(
d

2
− k

)]
Proposition F.6

≥ 0.999 · 0.5

0.999
= 0.5.

Thus, from Lemma F.3 we have rDSRS ≥ u = 0.02
√
d.

The inequality (∗) follows from Fact F.7.
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Fact F.7. Under the condition of Theorem 2, for sufficiently
large d,

t ≤ 0.98

(
d

2
− k

)
⇒ T 2 − (σ′√2t− u)2

4uσ′
√
2t

≥ 0.6. (44)

Proof of Fact F.7.

T 2 − (σ′√2t− u)2

4uσ′
√
2t

≥ 0.6

⇐⇒ T 2 − (σ′√2t− u)2 ≥ 2.4uσ′√2t

x := σ′√2t⇐⇒ T 2 − (x− u)2 ≥ 2.4ux

⇐⇒ x2 + 0.4ux+ u2 − T 2 ≤ 0.

From Proposition F.5, we have

u2 − T 2

=0.0004dσ2 − 2σ2ΓCDF−1
d/2(Pcon)

≤0.0004dσ2 − 0.99dσ2 < 0.

(45)

Thus,

x2 + 0.4ux+ u2 − T 2 ≤ 0

⇐⇒ x ≤
−0.4u+

√
0.16u2 − 4(u2 − T 2)

2

= −0.2u+
√
T 2 − 0.96u2

⇐⇒ t ≤ (−0.2u+
√
T 2 − 0.96u2)2

2σ′2 .

Again, from Proposition F.5,

T 2 − 0.96u2

=2σ2ΓCDF−1
d/2(Pcon)− 0.96× 0.0004dσ2

≥(0.99− 0.96× 0.0004)dσ2,

(46)

and therefore

(−0.2u+
√
T 2 − 0.96u2)2

≥dσ2
(
−0.004 +

√
0.99− 0.96× 0.0004

)2 ≈ 0.9816dσ2

≥0.98dσ2.
(47)

Then,

t ≤ (−0.2u+
√
T 2 − 0.96u2)2

2σ′2

⇐=t ≤ 0.98dσ2

2σ2
· d− 2k

d

⇐⇒ t ≤ 0.98

(
d

2
− k

)
.

F.4. Theorem 6

Theorem 6. Let d be the input dimension and F0 be the
base classifier. For an input point x0 ∈ Rd with true class
y0, suppose F0 satisfies (σ, Pcon)-Concentration property
and Prϵ∼N (σ)[F0(x0 + ϵ) = y0] = Pcon where Pcon < 1.
The smoothed classifier F̃P′

0 is constructed from F0 and
smoothed by generalized Gaussian P ′ = N g(k0, σ) where
k0 is a constant independent of input dimension d. Then,
for any constant c > 0, there exists d0, such that when input
dimension d ≥ d0, any method cannot certify ℓ2 radius
c
√
d, where T = σ

√
2ΓCDF−1

d/2(Pcon) and ΓCDFd/2 is

the CDF of gamma distribution Γ(d/2, 1).

We defer the proof to Appendix F.5. This theorem suggests
that, if we use generalized Gaussian whose k is a constant
with respect to input dimension d or use standard Gaus-
sian (whose k = 0 is a constant) for smoothing, we cannot
achieve Ω(

√
d) certified radius rate from DSRS and any

other certification method.

F.5. Proof of Theorem 6

The proof of Theorem 6 is based on three lemmas listed
below.
Lemma F.8. Given k0 ∈ N, for any ϵ > 0, there exists d0,
such that when d > d0,

Pr
t∼Γ( d

2−k0,1)

[
t ≤ (1− ϵ)

(
d

2
− k0

)]
≤ 0.48

0.99
. (48)

Lemma F.9. Given Pcon ≥ 0, for any ϵ > 0, there exists d0,
such that when d > d0,

T := σ
√

2ΓCDF−1
d/2(Pcon) ≤ σ

√
(1 + ϵ)d. (49)

Lemma F.10. For any ϵ > 0, there exists d0, such that
when d > d0,

BetaCDF d−1
2
(0.5− ϵ) ≤ 0.01. (50)

Proofs of these lemmas are based on Chebyshev’s inequality.

Proof of Lemma F.8. For t ∼ Γ(d/2− k0, 1), we have

E[t] = d/2− k0, Var[t] = d/2− k0. (51)

By Chebyshev’s inequality,

Pr

[
t ≤ (1− ϵ)

(
d

2
− k0

)]
≤Pr

[
|t − E[t]| ≥ ϵ

(
d

2
− k0

)]
≤ 1

ϵ2(d2 − k0)
. (52)

Picking d0 = 2
(

0.99
0.48ϵ2 + k0

)
concludes the proof.
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Proof of Lemma F.9. We define random variable v ∼
Γ(d/2, 1), so E[v] = d/2,Var[v] = d/2. By Chebyshev’s
inequality,

Pr[v ≤ (1 + ϵ)d/2]

≥1− Pr[v ≥ (1 + ϵ)d/2]

≥1− Pr[|v − E[v]| ≥ ϵd/2]

≥1− 2

dϵ2
.

(53)

Let d0 = 2
ϵ2(1−Pcon)

. Thus, when d > d0, Pr[v ≤

(1 + ϵ)d/2] ≥ 1 − 2

d0ϵ2
= Pcon, which implies that

ΓCDFd/2((1 + ϵ)d/2) ≥ Pcon and ΓCDF−1
d/2(Pcon) ≤

(1 + ϵ)d/2 and concludes the proof.

Proof of Lemma F.10. We define random variable v ∼
Beta(d−1

2 , d−1
2 ), and we have E[v] = 1/2,Var[v] = 1

4d .
By Chebyshev’s inequality,

Pr[v ≤ 0.5− ϵ] ≤ Pr[|v − E[v]| ≥ ϵ] ≤ 1

4dϵ2
. (54)

Let d0 = 25
dϵ2 , when d > d0, Pr[v ≤ 0.5 − ϵ] ≤ 0.01 and

hence BetaCDF d−1
2
(0.5− ϵ) ≤ 0.01.

Now we are ready to prove the main theorem.

Proof of Theorem 6. According to the above three lemmas,
we pick d0, such that when d > d0, the followings hold
simultaneously.

Pr
t∼Γ( d

2−k0,1)

[
t ≤

(
1− c2

8σ2

)(
d

2
− k0

)]
≤ 0.48

0.99
,

(55)

T = σ
√

2ΓCDF−1
d/2(Pcon) ≤ σ

√(
1 +

c2

8σ2

)
d, (56)

BetaCDF d−1
2

(
0.5− c

8σ

)
≤ 0.01. (57)

We define vector δ = (c
√
d, 0, 0, . . . , 0)T. Since F0 satisfies

(σ, Pcon)-concentration property and Prϵ∼N (σ)[F0(x0 +
ϵ) = y0] = Pcon, up to a set of zero measure, the region
{ϵ : F0(x0+ϵ) = y0} and region {ϵ : ∥ϵ∥2 ≤ T} coincide.

We now show that Eϵ∼P′=N g(k0,σ)[F0(x0+δ+ϵ) = y0] <

0.5 when c ≤ σ
√
8/7.

Eϵ∼P′ [F0(x0 + δ + ϵ) = y0]

= Pr
ϵ∼P′

[∥δ + ϵ∥2 ≤ T ]

=Et∼Γ( d
2−k0,1)

BetaCDF d−1
2

(
T 2 − (σ′√2t − c

√
d)2

4σ′
√
2t · c

√
d

)

(from Eqn. (29))

≤0.99Et∼Γ( d
2−k0,1)

I

[
T 2 − (σ′√2t − c

√
d)2

4σ′
√
2t · c

√
d

≥ 0.5− c

8σ

]
+ 0.01 (by Eqn. (57) and BetaCDF·(·) ≤ 1)

=0.99 Pr
t∼Γ( d

2−k0,1)

[
T 2 − (σ′√2t − c

√
d)2

4σ′
√
2t · c

√
d

≥ 0.5− c

8σ

]
+ 0.01. (58)

Since

T 2 − (σ′√2t − c
√
d)2

4σ′
√
2t · c

√
d

≥ 0.5− c

8σ

⇐⇒ T 2 − 2tσ2 d

d− 2k0
− dc2 +

c2d

2

√
2t

d− 2k0
≥ 0

(59)

Eqn. (56)
=⇒

(
1 +

c2

8σ2

)
dσ2 − 2tσ2 d

d− 2k0
− dc2 (60)

+
c2d

2

√
2t

d− 2k0
≥ 0.

We now inject t = 0 and t =
(
1− c2

8σ2

) (
d
2 − k0

)
to the

LHS of Eqn. (60).

• When t = 0,

LHS of Eqn. (60) =
(
1 +

c2

8σ2

)
dσ2 − dc2

= d

(
σ2 − 7

8
c2
)

≥ 0.

• When t =
(
1− c2

8σ2

) (
d
2 − k0

)
,

LHS of Eqn. (60)

=

(
1 +

c2

8σ2

)
dσ2 − 2dσ2

d− 2k0

(
1− c2

8σ2

)(
d

2
− k0

)
− dc2 +

dc2

2

√
1− c2

8σ2

=dσ2 +
dc2

8
− dσ2 +

dc2

8
− dc2 +

dc2

2

√
1− c2

8σ2

≤dc2

4
− dc2 +

dc2

2
< 0.

Notice that the LHS of Eqn. (60) is a parabola with negative
second-order coefficient. Thus,

Eqn. (60) =⇒ t ∈
[
0,

(
1− c2

8σ2

)(
d

2
− k0

)]
(61)
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and hence

Pr
t∼Γ( d

2−k0,1)

[
T 2 − (σ′√2t − c

√
d)2

4σ′
√
2t · c

√
d

≥ 0.5− c

8σ

]

≤ Pr
t∼Γ( d

2−k0,1)

[
t ≤

(
1− c2

8σ2

)(
d

2
− k0

)]
≤0.48

0.99
. (by Eqn. (55))

(62)
Plugging this inequality to Eqn. (58), we get

Eϵ∼P′ [F0(x0+δ+ϵ) = y0] ≤ 0.99 · 0.48
0.99

+0.01 = 0.49.

(63)
As a result, when c ≤ σ

√
8/7, the smoothed classifier F̃P′

0

is not robust given the perturbation δ = (c
√
d, 0, 0, · · · , 0)T,

since there may exist another y′ ̸= y0 with Eϵ∼P′ [F0(x0 +

δ + ϵ) = y′] ≥ 0.51 so F̃P′

0 (x0 + δ) = y′ ̸= y0.

When c > σ
√

8/7, within the ℓ2 radius ball c
√
d, there

exists perturbation vector δ = (c′
√
d, 0, 0, · · · , 0)T fooling

smoothed classifier F̃P′

0 where c′ = σ
√
8/7. Hence, for

any c > 0, there exists a perturbation within ℓ2 ball with
radius c

√
d, such that smoothed classifier F̃P′

0 can be fooled,
and then any robustness certification method cannot certify
ℓ2 radius c

√
d since the smoothed classifier itself is not

robust.

G. Proofs of DSRS Computational Method
G.1. Proof of Strong Duality (Theorem 3)

Proof of Theorem 3. We write down the Lagrangian dual
function of Eqn. (8a):

Λ(f, λ1, λ2) :=Eϵ∼P [f(δ + ϵ)]− λ1 (Eϵ∼P [f(ϵ)]− PA)

− λ2 (Eϵ∼Q[f(ϵ)]−QA) .
(64)

Then, from C’s expression (Eqn. (8)), we have

Cδ(PA, QA)

=min
f

Eϵ∼P [f(ϵ+ δ)] s.t. 0 ≤ f(ϵ) ≤ 1 ∀ϵ ∈ Rd,

Eϵ∼P [f(ϵ)] = PA,Eϵ∼Q[f(ϵ)] = QA

= min
f :Rd→[0,1]

max
λ1,λ2∈R

Λ(f, λ1, λ2)

(i)

≥ max
λ1,λ2∈R

min
f :Rd→[0,1]

Λ(f, λ1, λ2)

(ii)
= max

λ1,λ2∈R
Pr
ϵ∼P

[p(ϵ) < λ1p(ϵ+ δ) + λ2q(ϵ+ δ)]

− λ1 Pr
ϵ∼P

[p(ϵ− δ) < λ1p(ϵ) + λ2q(ϵ)]

− λ2 Pr
ϵ∼Q

[p(ϵ− δ) < λ1p(ϵ) + λ2q(ϵ)]

+ λ1PA + λ2QA. (65)

In the above equation, (i) is from the min-max in-
equality. For completeness, we provide the proof as
such: Define g : R2 → R such that g(λ1, λ2) :=
minf :Rd→[0,1] Λ(f, λ1, λ2). As a result, for any λ1, λ2 ∈ R
and any f : Rd → [0, 1], g(λ1, λ2) ≤ Λ(f, λ1, λ2).
So for any f : Rd → [0, 1], maxλ1,λ2∈R g(λ1, λ2) ≤
maxλ1,λ2∈R Λ(f, λ1, λ2), which implies

max
λ1,λ2∈R

g(λ1, λ2) ≤ min
f :R→[0,1]

max
λ1,λ2∈R

Λ(f, λ1, λ2), (66)

where LHS is the RHS of (i) and RHS is the LHS of (i).

In above equation, (ii) comes from a closed-form solution
of f for Λ(f, λ1, λ2) given (λ1, λ2) ∈ R2. Notice that we
can rewrite Λ(f, λ1, λ2) as an integral over Rd:

Λ(f, λ1, λ2)

=Eϵ∼P [f(δ + ϵ)]− λ1Eϵ∼P [f(ϵ)]− λ2Eϵ∼Q[f(ϵ)]

+ λ1PA + λ2QA

=

∫
Rd

f(x) · (p(x− δ)− λ1p(x)− λ2q(x)) dx

+ λ1PA + λ2QA. (67)

We would like to minimize over f : Rd → [0, 1] in
Eqn. (67) and simple greedy solution reveals that we should
choose

f(x) =

{
1, p(x− δ)− λ1p(x)− λ2q(x) < 0

0. p(x− δ)− λ1p(x)− λ2q(x) ≥ 0
(68)

We inject this f into Eqn. (67) and get

min
f :Rd→[0,1]

Λ(f, λ1, λ2)

= Pr
ϵ∼P

[p(ϵ) < λ1p(ϵ+ δ) + λ2q(ϵ+ δ)]

+ λ1

(
PA − Pr

ϵ∼P
[p(ϵ− δ) < λ1p(ϵ) + λ2q(ϵ)]

)
+ λ2

(
QA − Pr

ϵ∼Q
[p(ϵ− δ) < λ1p(ϵ) + λ2q(ϵ)]

)
.

(69)
Hence (ii) holds.

On the other hand, we know that Dδ(PA, QA) (defined
by Eqn. (10)) is feasible by theorem statement. Denote
(λ∗

1, λ
∗
2) ∈ R2 to a feasible solution to Dδ(PA, QA) and d∗

to the objective value, then from the constraints of (D) we
know

Pr
ϵ∼P

[p(ϵ− δ) < λ∗
1p(ϵ) + λ∗

2q(ϵ)] = PA,

Pr
ϵ∼Q

[p(ϵ− δ) < λ∗
1p(ϵ) + λ∗

2q(ϵ)] = QA,

Pr
ϵ∼P

[p(ϵ) < λ∗
1p(ϵ+ δ) + λ∗

2q(ϵ+ δ)] = d∗.

(70)

Plugging in these equalities into Eqn. (65), we have

Cδ(PA, QA) ≥ d∗−λ1PA−λ2QA+λ1PA+λ2QA = d∗.
(71)
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At the same time, we define function f∗ : Rd → [0, 1] such
that

f∗(x) = I[p(x− δ)− λ∗
1p(x)− λ∗

2q(x) < 0]. (72)

From Eqn. (70), f∗ satisfies the constraints of
(C) (Eqns. (8b) and (8c)). Since (C) minimizes over all
possible functions f : Rd → [0, 1], we have

Cδ(PA, QA) ≤ Eϵ∼P [f
∗(ϵ+ δ)] = d∗. (73)

Combining Eqns. (71) and (73), we get Cδ(PA, QA) = d∗

and hence the strong duality holds.

G.2. Proofs of Propositions 1 and 2 and Theorem 4

Proof of Proposition 1. Suppose f1 is the optimal solu-
tion to Cδ(P

1
A, Q

1
A) and f2 is the optimal solution to

Cδ(P
2
A, Q

2
A). Due to the linearity of expectation, (f1 +

f2)/2 satisfies all the constraints of Eqn. (8) for PA = (P 1
A+

P 2
A)/2 and QA = (Q1

A +Q2
A)/2, i.e., (f1 + f2)/2 is feasi-

ble for PA = (P 1
A + P 2

A)/2 and QA = (Q1
A +Q2

A)/2 with
objective value

(
Cδ(P

1
A, Q

1
A) + Cδ(P

2
A, Q

2
A)
)
/2. Thus,

we have

Cδ

(
P 1
A + P 2

A

2
,
Q1

A +Q2
A

2

)
≤

1

2

(
Cδ(P

1
A, Q

1
A) + Cδ(P

2
A, Q

2
A)
) (74)

since C is a minimization problem. By definition,
Cδ(PA, QA) is convex.

Remark. Since Cδ(PA, QA) is defined on a compact R2

subspace, the convexity implies continuity. The continuity
property is used in the following proof of Theorem 4.

Proof of Proposition 2. Here, we only prove the mono-
tonicity for functions x 7→ miny Cδ(x, y) and x 7→
argminy Cδ(x, y). The same statement for y 7→
minx Cδ(x, y) and y 7→ minx Cδ(x, y) is then straight-
forward due to the symmetry.

For simplification, we define C′
δ : x 7→ miny Cδ(x, y)

and let C̃δ : x 7→ argminy Cδ(x, y). We notice that both
functions can be exactly mapped to the constrained opti-
mization problem (C′) which removes the second constraint
in Eqn. (8b) in (C):

minimize
f

Eϵ∼P [f(δ + ϵ)] (75a)

s.t. Eϵ∼P [f(ϵ)] = x, (75b)

0 ≤ f(ϵ) ≤ 1 ∀ϵ ∼ Rd. (75c)

C′
δ(x) is the optimal objective to (C′) and C̄δ(x) is

Eϵ∼Q[f
∗(ϵ)] where f∗ is the optimal solution.

Either based on Neyman-Pearson lemma [1933] or strong
duality, (C′) is equivalent to (D′) defined as such:

Pr
ϵ∼P

[p(ϵ) < λp(ϵ+ δ)] (76a)

s.t. Pr
ϵ∼P

[p(ϵ− δ) < λp(ϵ)] = x. (76b)

For a given x, we only need to find λ satisfying Eqn. (76b).
Then,

C′
δ(x) = Pr

ϵ∼P
[p(ϵ) < λp(ϵ+ δ)], (77)

C̄δ(x) = Pr
ϵ∼Q

[p(ϵ− δ) < λp(ϵ)]. (78)

Now the monotonicity (what we would like to prove) is
apparent. For x1 < x2, from Eqn. (76b), we have λ1 < λ2,
since the probability density function p is non-negative.
Thus, we inject λ1 and λ2 into Eqn. (77) and Eqn. (78), and
yield

C′
δ(x1) ≤ C′

δ(x2), C̄δ(x1) ≤ C̄δ(x2), (79)

which concludes the proof.

Proof of Theorem 4. We discuss the cases according to the
branching statement in the algorithm (Alg. 1).

If q > QA,

• if q ≤ QA, by definition we have Cδ(PA, q) ≤
Cδ(PA, y) for arbitrary y. According to Proposi-
tion 2, we also have Cδ(PA, q) ≤ Cδ(x, y) for ar-
bitrary x ≥ PA and arbitrary y. Given that (PA, q) ∈
[PA, PA]× [QA, QA], (PA, q) solves Eqn. (11);

• if q > QA, by convexity, Cδ(PA, QA) ≤ Cδ(PA, y)

for y ∈ [QA, QA].

We further show that Cδ(PA, QA) ≤ Cδ(x, QA) for
x ∈ [PA, PA]: assume that this is not true, by Propo-
sition 1, the function y 7→ argminx Cδ(x, y) has
function value larger than PA at y = QA. Since
Cδ(0, 0) = 0 is the global minimum of Cδ , the func-
tion value at y = 0 is x = 0. By Proposition 2, there ex-
ists y0 ∈ [0, QA] such that PA = argminx Cδ(x, y0).
Then, we get

Cδ(PA, y0)

(i.)

≤Cδ(argmin
x

Cδ(x, QA), QA)

(ii.)

≤ Cδ(PA, QA),

(80)

where (i.) follows from Proposition 2 for y 7→
argminx Cδ(x, y); (ii.) is implied in the meaning of
argminx Cδ(x, QA). Since y0 ∈ [0, QA], Eqn. (80)
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implies that q should be in [0, QA] as well, which vio-
lates the branching condition. Thus, Cδ(PA, QA) ≤
Cδ(x, QA) for x ∈ [PA, PA].

Using Proposition 2 for function x 7→
argminy Cδ(x, y) in interval [PA, PA] together
with Proposition 1, we get Cδ(x, QA) ≤ Cδ(x, y) for
x ∈ [PA, PA] and y ∈ [QA, QA]. Thus, (PA, QA)
solves Eqn. (11).

If q ≤ QA,

• if p ≤ PA, by definition we have
Cδ(max{p, PA}, QA) ≤ Cδ(x, QA) for x ∈
[PA, PA]. According to Proposition 2 and condition
q ≤ QA, we further have Cδ(max{p, PA}, QA) ≤
Cδ(max{p, PA}, y) ≤ Cδ(x, y) for arbitrary
x ∈ [PA, PA] and y ∈ [QA, QA]. Given that
(max{p, PA}, QA) ∈ [PA, PA] × [QA, QA],
(p, QA) solves Eqn. (11);

• if p > PA, according to Proposition 1, Cδ(PA, QA) ≤
Cδ(x, QA) for x ∈ [PA, PA].

We further show that Cδ(PA, QA) ≤ Cδ(PA, y) for
y ∈ [QA, QA]: assume that this is not true, by Propo-
sition 1, the function x 7→ argminy Cδ(x, y) has
function value larger than QA at x = PA. Since
Cδ(0, 0) is the global minimum, by Proposition 2 on
x 7→ argminy Cδ(x, y), there exists x0 ∈ [0, PA]
such that QA = argminy Cδ(x0, y). Then, we get

Cδ(x0, QA)

≤Cδ(PA, argmin
y

Cδ(PA, y))

≤Cδ(PA, QA)

(81)

following the similar deduction as in Eqn. (80). Since
x0 ∈ [0, PA], Eqn. (81) implies that p should be in
[0, PA] as well, which violates the branching condition.
Thus, Cδ(PA, QA) ≤ Cδ(PA, y) for y ∈ [QA, QA].

Using Proposition 2 for function y 7→
argminx Cδ(x, y) in interval [QA, QA] together with
Proposition 1, we get Cδ(PA, y) ≤ Cδ(x, y) for
y ∈ [QA, QA] and x ∈ [PA, PA]. Thus, (PA, QA)
solves Eqn. (11).

G.3. Proof of Theorem 5

Proof of Theorem 5. We first define rp(∥ϵ∥2) = p(ϵ) and
rq(∥ϵ∥2) = q(ϵ), then easily seen the concrete expressions

of rp and rq are:

rp(t) =
1

(2σ′2)d/2−kπd/2
· Γ(d/2)

Γ(d/2− k)
, (82)

rq(t) =
ν

(2σ′2)d/2−kπd/2
· Γ(d/2)

Γ(d/2− k)
, (83)

where

ν :=
Γ(d/2− k)

γ(d/2− k, T 2

2σ′2 )
> 1 (84)

and γ is the lower incomplete Gamma function.

Now we use level-set integration similar as the proof in
Lemma F.3 to get the expressions of P , Q, and R respec-
tively. Since P and Q are ℓ2-symmetric, without loss of
generality, we let δ = (r, 0, . . . , 0)T.

(P).

Suppose PT = rp(T ).

P (λ1, λ2)

= Pr
ϵ∼P=N g(k,σ)

[p(ϵ− δ) < λ1p(ϵ) + λ2q(ϵ)]

=

∫
Rd

I[p(x− δ) < λ1p(x) + λ2q(x)]p(x)dx

=

∫ PT

0

ydy

∫
p(x)=y

p(x−δ)<λ1p(x)

dx

∥∇p(x)∥2
+

∫ ∞

PT

ydy

∫
p(x)=y

p(x−δ)<(λ1+λ2ν)p(x)

dx

∥∇p(x)∥2

=

∫ PT

0

ydy
2πd/2

Γ(d/2)
r−1
p (y)d−1

(
− 1

r′p(r
−1
p (y))

)
·

Pr[p(x− δ) ≤ λ1p(x) | p(x) = y]+∫ ∞

PT

ydy
2πd/2

Γ(d/2)
r−1
p (y)d−1

(
− 1

r′p(r
−1
p (y))

)
·

Pr[p(x− δ) < (λ1 + λ2ν)p(x) | p(x) = y]

y=rp(t)
=

∫ ∞

T

rp(t)dt
2πd/2

Γ(d/2)
td−1·

Pr[p(x− δ) < λ1p(x) | ∥x∥2 = t]+∫ T

0

rp(t)dt
2πd/2

Γ(d/2)
td−1·

Pr[p(x− δ) < (λ1 + λ2ν)p(x) | ∥x∥2 = t]

=
1

Γ(d/2− k)

∫ ∞

T 2/(2σ′2)

td/2−k−1 exp(−t)dt·

Pr[p(x− δ) < λ1p(x) | ∥x∥2 = σ′√2t]+

1

Γ(d/2− k)

∫ T 2/(2σ′2)

0

td/2−k−1 exp(−t)dt·

Pr[p(x− δ) < (λ1 + λ2ν)p(x) | ∥x∥2 = σ′√2t]
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=Et∼Γ(d/2−k,1)

{
u3(t, λ1), t ≥ T 2/(2σ′2)
u3(t, λ1 + λ2ν). t < T 2/(2σ′2)

Here, u3(t, λ) = Pr[p(x− δ) < λp(x) | ∥x∥2 = σ′√2t].

(Q).

Similarly,

Q(λ1, λ2)

= Pr
ϵ∼Q=N g

trunc(k,T,σ)
[p(ϵ− δ) < λ1p(ϵ) + λ2q(ϵ)]

=

∫
∥x∥2≤T

I[p(x− δ) < λ1p(x) + λ2q(x)]q(x)dx

=

∫ ∞

νPT

ydy

∫
q(x)=y

p(x−δ)<(λ1+λ2ν)p(x)

dx

∥∇q(x)∥2

y=rq(t)
=

∫ T

0

rq(t)dt
2πd/2

Γ(d/2)
td−1·

Pr[p(x− δ) < (λ1 + λ2ν)p(x) | ∥x∥2 = t]

=νEt∼Γ(d/2−k,1)u3(t, λ1 + λ2ν) · I
[
t ≤ T 2

2σ′2

]
.

(R).

Now, for R:

R(λ1, λ2)

= Pr
ϵ∼P=N g(k,σ)

[p(ϵ) < λ1p(ϵ+ δ) + λ2q(ϵ+ δ)]

=

∫
Rd

I[p(x) < λ1p(x+ δ) + λ2q(x+ δ)]p(x)dx

=Et∼Γ(d/2−k,1)u4(t, λ1, λ2).

Here, u4(t, λ1, λ2) = Pr[λ1p(x + δ) + λ2q(x + δ) >
rp(σ

′√2t) | ∥x∥2 = σ′√2t].

Plugging Lemma G.1 into P (λ1, λ2) and Q(λ1, λ2), and
then plugging Lemma G.2 into R(λ1, λ2), we yield the
desired expressions in theorem statement.

Lemma G.1. Under the condition of Theorem 5, let δ =
(r, 0, . . . , 0)T,

u3(t, λ) := Pr[p(x− δ) < λp(x) | ∥x∥2 = σ′√2t]

= BetaCDF d−1
2

(
(r + σ′√2t)2

4rσ′
√
2t

−
2kσ′2W ( t

ke
t
k λ− 1

k )

4rσ′
√
2t

)
,

(85)
where W is the principal branch of Lambert W function.

Proof of Lemma G.1. p(x − δ) < λp(x) means that
rp(∥x − δ∥2) < λrp(∥x∥2) and therefore ∥x − δ∥2 >

r−1
p (λrp(∥x∥2)). Given that ∥x∥2 = σ′√2t, we have

x2
1 +

d∑
i=2

x2
i = 2tσ′2,

(x1 − r)2 +

d∑
i=2

x2
i ≥ r−1

p (λrp(σ
′√2t))2.

(86)

This is equivalent to

x1 ≤
2tσ′2 + r2 − r−1

p (λrp(σ
′√2t))2

2r
. (87)

From the expression of rp (Eqn. (82)), we have

r−1
p (λrp(σ

′√2t))2 = 2σ′2kW

(
t

k
e

t
k λ− 1

k

)
. (88)

Thus, when ∥x∥2 = σ′√2t and x uniformly sampled from
this sphere,

p(x− δ) < λp(x)

⇐⇒ x1 ≤
2tσ′2 + r2 − 2σ′2kW ( t

ke
t
k λ− 1

k )

2r

⇐⇒
1 + x1

σ′
√
2t

2
≤

(r + σ′√2t)2 − 2σ′2kW
(

t
ke

t
k λ− 1

k

)
4rσ′

√
2t

.

(89)
According to (Yang et al., 2020, Lemma I.23), for x uni-
formly sampled from sphere with radius σ′√2t, the compo-

nent coordinate
1 + x1

σ′
√
2t

2
∼ Beta(d−1

2 , d−1
2 ). Combining

Eqn. (89) with this result concludes the proof.

Lemma G.2. Under the condition of Theorem 5, let δ =
(r, 0, . . . , 0)T,

u4(t, λ1, λ2) := Pr[λ1p(x+ δ) + λ2q(x+ δ) > rp(σ
′√2t)

| ∥x∥2 = σ′√2t]

=

{
u1(t), λ1 ≤ 0
u1(t) + u2(t), λ1 > 0

(90)
where

u1(t) =BetaCDF d−1
2

min{T 2, 2σ′2kW ( t
k e

t
k (λ1 + νλ2)

1
k )}

4rσ′
√
2t

−
(σ′√2t − r)2

4rσ′
√
2t

)
,

u2(t) =max

0,BetaCDF d−1
2

 2σ′2kW ( t
k e

t
k λ

1
k
1 ) − (σ′√2t − r)2

4rσ′
√
2t


−BetaCDF d−1

2

(
T 2 − (σ′√2t − r)2

4rσ′
√
2t

)}
,

Proof of Lemma G.2. Under the condition that ∥x∥2 =
σ′√2t, we separate two cases: q(x+δ) > 0 and q(x+δ) =
0, which corresponds to ∥x+ δ∥2 ≤ T and ∥x+ δ∥2 > T .



Double Sampling Randomized Smoothing

(1) q(x+ δ) > 0:

Notice that

q(x+ δ) > 0

⇐⇒ ∥x+ δ∥22 ≤ T 2

⇐⇒ x1 ≤ T 2 − 2tσ′2 − r2

2r
.

(91)

From Eqn. (83), q(x+ δ) = νp(x+ δ). Thus,

λ1p(x+ δ) + λ2q(x+ δ) > rp(σ
′√2t)

⇐⇒ (λ1 + νλ2)p(x+ δ) ≥ rp(σ
′√2t)

⇐⇒ ∥x+ δ∥22 ≤ r−1
p

(
rp(σ

′√2t)

λ1 + νλ2

)2

⇐⇒ x1 ≤
r−1
p

(
rp(σ

′√2t)
λ1+νλ2

)2
− 2tσ′2 − r2

2r
.

(92)

Therefore,

Pr[λ1p(x + δ) + λ2q(x + δ) > rp(σ
′√

2t) ∧ q(x + δ) > 0 | ∥x∥2 = σ
′√

2t]

= Pr

x1 ≤
min

{
r−1
p

(
rp(σ′√2t)

λ1+νλ2

)2

, T 2

}
− 2tσ′2 − r2

2r

∣∣∣ ∥x∥2 = σ
′√

2t

 .

(93)

By (Yang et al., 2020, Lemma I.23) and Eqn. (88), we thus
have

Pr[λ1p(x+ δ) + λ2q(x+ δ) > rp(σ
′√2t)

∧ q(x+ δ) > 0 | ∥x∥2 = σ′√2t]

=BetaCDF d−1
2

(
min{T 2, 2σ′2kW ( t

ke
t
k (λ1 + νλ2)

1
k )}

4rσ′
√
2t

− (σ′√2t− r)2

4rσ′
√
2t

)
= u1(t).

(94)

(2) q(x+ δ) = 0:

Similarly,

q(x+ δ) = 0 ⇐⇒ x1 >
T 2 − 2tσ′2 − r2

2r
. (95)

When λ1 ≤ 0, the condition λ1p(x+ δ) + λ2q(x+ δ) =
λ1p(x + δ) > rp(σ

′√2t) can never be satisfied. When
λ1 > 0, we have

λ1p(x+ δ) + λ2q(x+ δ) > rp(σ
′√2t)

⇐⇒ ∥x+ δ∥22 ≤ r−1
p

(
rp(σ

′√2t)

λ1

)2

⇐⇒ x1 ≤
r−1
p

(
rp(σ

′√2t)
λ1

)2
− 2tσ′2 − r2

2r
.

(96)

Therefore, when λ1 ≤ 0,

Pr[λ1p(x+ δ) + λ2q(x+ δ) > rp(σ
′√2t)

∧ q(x+ δ) = 0 | ∥x∥2 = σ′√2t] = 0.
(97)

When λ1 > 0, the condition that lambda1p(x + δ) +
λ2q(x+ δ) > rp(σ

′√2t) is equivalent to

x1 ∈

T 2 − 2tσ′2 − r2

2r
,
r−1
p

(
rp(σ

′√2t)
λ1

)2
− 2tσ′2 − r2

2r

 .

(98)
Again, by (Yang et al., 2020, Lemma I.23) and Eqn. (88),
we have

Pr[λ1p(x+ δ) + λ2q(x+ δ) > rp(σ
′√2t)

∧ q(x+ δ) = 0 | ∥x∥2 = σ′√2t]

=max

0,BetaCDF d−1
2

2σ′2kW ( t
k
e

t
k λ

1
k
1 )− (σ′√2t− r)2

4rσ′
√
2t


−BetaCDF d−1

2

(
T 2 − (σ′√2t− r)2

4rσ′
√
2t

)}
=u2(t).

(99)

(3) Combining the two cases:

Now we are ready to combine the two cases.

Pr[λ1p(x+ δ) + λ2q(x+ δ) > rp(σ
′√2t)

| ∥x∥2 = σ′√2t]

=Pr[λ1p(x+ δ) + λ2q(x+ δ) > rp(σ
′√2t)

∧ q(x+ δ) > 0 | ∥x∥2 = σ′√2t]+

Pr[λ1p(x+ δ) + λ2q(x+ δ) > rp(σ
′√2t)

∧ q(x+ δ) = 0 | ∥x∥2 = σ′√2t]

=

{
u1(t), λ1 ≤ 0
u1(t) + u2(t). λ1 > 0

(100)

G.4. Discussion on Uniqueness of Feasible Pair

As we sketched in Section 5.3, in general cases, the pair
that satisfies constraints in Eqn. (12) is unique. We formally
state this finding and prove it in Theorem 7.

Theorem 7 (Uniqueness of Feasible Solution in Eqn. (12)).
Under the same setting of Theorem 5, if QA ∈ (0, 1)
and PA ∈ (QA/ν, 1 − (1 − QA)/ν), then there is the
pair (λ1, λ2) that satisfies both P (λ1, λ2) = PA and
Q(λ1, λ2) = QA is unique.

We prove the theorem in the end of this section, which
is based on the strict monotonicity of two auxiliary func-
tions: g(λ1 + νλ2) := Q(λ1, λ2) and h(λ1) (defined in
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Section 5.3). For other types of smoothing distributions P
and Q, in Theorem 11 we characterize and prove a sufficient
condition that guarantees the uniqueness of feasible pair.

We observe that the feasible region of (PA, QA) is

R = {(x, y) : y/ν ≤ x ≤ 1− (1− y)/ν, 0 ≤ y ≤ 1}.
(101)

Therefore, the theorem states that when (PA, QA) is an
internal point of R, the feasible solution is unique and we
can use our proposed method to find out such a feasible
solution and thus solve the dual problem (D). Now, the
edge cases are that (PA, QA) lies on the boundary of R. We
discuss all these cases and show that these boundary cases
correspond to degenerate problems that are easy to solve
respectively:

• QA = 0:
When QA = 0, and PA ∈ (0, 1) (otherwise, triv-
ially R(λ1, λ2) = PA ∈ {0, 1} solves (D)), we
have λ1 + νλ2 → 0+ and thus R(λ1, λ2) =
Et∼Γ(d/2−k,1)u2(t). Since u2(t) only involves λ1, we
only require λ1 to be unique to deploy the method.
Since PA = P (λ1, λ2) = Et∼Γ(d/2−k,1)u3(t, λ1) ·
I[t ≥ T 2/(2σ′2)] and PA ∈ (0, 1), by similar argu-
ments as in Theorem 7, we know λ1 is unique. Hence,
all feasible pairs give the same R(λ1, λ2), i.e., have
the same objective value and the proposed method that
computes a feasible one is sufficient for solving (D).

• QA = 1:
When QA = 1 and PA ∈ (0, 1), we observe
that u1(t) ≤ BetaCDF d−1

2

(
T 2

4rσ′
√
2t

− (σ′√2t−r)2

4rσ′
√
2t

)
where equality is feasible with the selected (λ1 +
νλ2) → +∞ and hence the maximum of
Et∼Γ(d/2−k,1)u1(t) among all feasible (λ1, λ2) is a
constant. On the other hand, since u2(t) only in-
volves λ1 that is unique as discussed in “QA =
0” case, all feasible pairs give the same value of
Et∼Γ(d/2−k,1)u2(t). As a result, the maximum of
R(λ1, λ2) can be computed by adding the unique value
of Et∼Γ(d/2−k,1)u2(t) and the constant corresponding
to the maximum of Et∼Γ(d/2−k,1)u1(t) among all fea-
sible (λ1, λ2), which solves the dual problem (D).

• PA = QA/ν:
We assume PA, QA ∈ (0, 1) (otherwise covered by
former cases). In this case, λ1 satisfies that h(λ1) =
PA −QA/ν = 0, so λ1 → 0+. As a result, u2(t) = 0
for all t > 0 and R(λ1, λ2) = Et∼Γ(d/2−k,1)u1(t).
We observe that u1(t) is only related to (λ1 + νλ2)
where (λ1+νλ2) satisfying Q(λ1, λ2) = QA is unique
since QA ∈ (0, 1). Thus, any feasible (λ1, λ2) would
have the same (λ1 + νλ2) and hence leads to the same
R(λ1, λ2). So the proposed method that finds one
feasible (λ1, λ2) suffices for solving (D).

• PA = 1− 1−QA

ν :
We again assume PA, QA ∈ (0, 1) (otherwise cov-
ered by former cases). In this case, λ1 satisfies
that h(λ1) = 1 − 1/ν. Since Et∼Γ(d/2−k,1)I[t <
T 2/(2σ′2)] = 1/ν, we know u3(t, λ1) = 1 for
t ≥ T 2/(2σ′2) except a zero-measure set, and thus
λ1 → +∞. As a result, Et∼Γ(d/2−k,1)u2(t) =

1−Et∼Γ(d/2−k,1)BetaCDF d−1
2

(
T 2−(σ′√2t−r)2

4rσ′
√
2t

)
is a

constant. Similar as “PA = QA/ν” case, feasible (λ1+
νλ2) is unique. Therefore, feasible (λ1, λ2) leads to a
unique Et∼Γ(d/2−k,1)u1(t). We compute out these two
quantities Et∼Γ(d/2−k,1)u2(t) and Et∼Γ(d/2−k,1)u1(t)
so as to obtain the unique R(λ1, λ2) that solves (D).

We remark that in practice, we never observe any instances
that correspond to these edge cases though we implemented
these techniques for solving them.

Proof of Theorem 7. The high-level proof sketch is implied
in the derivation of our feasible (λ1, λ2) finding method
introduced in Section 5.3. We first show h(λ1) is mono-
tonically strictly increasing in a neighborhood of λ1 where
h(λ1) = PA −QA/ν, so the λ1 that satisfies PA −QA/ν
is unique. We then define g(γ) = νEt∼Γ(d/2−k,1)u3(t, γ) ·
I[t ≤ T 2/(2σ′2)], and show its strict monotonicity around
the neighborhood of λ∗ that satisfies g(γ∗) = QA, which
indicates that (λ1 + νλ2) that satisfies QA is unique. Com-
bining this two arguments, we know feasible (λ1, λ2) is
unique. Note that the key in this proof is the local strict
monotonicity, and the global (nonstrict) monotonicity for
both h(·) and g(·) is apparent from their expressions. We
now present the proofs for the local strict monotonicity of
these two functions h and g.

(1) h(λ1) is monotonically strictly increasing in a neighbor-
hood of λ1 where h(λ1) = PA −QA/ν.

From the theorem condition, we know that h(λ1) ∈
(0, 1 − 1/ν). Thus, there exists t0 ≥ T 2/(2σ′2), such
that u3(t0, λ1) ∈ (0, 1) (otherwise h(λ1) = 0 or 1− 1/ν).
From the closed-form equation of u3, for any neigh-
boring λ′

1 ̸= λ1, we will have W (t0/ke
t0/kλ

−1/k
1 ) ̸=

W (t0/ke
t0/kλ

′−1/k
1 ) by the monotonicity of Lambert W

function. On the other hand, since u3(t0, λ1) ∈ (0, 1) and
BetaCDF d−1

2
(·) is also strict monotonic in the neighbor-

hood, we have u3(t0, λ
′
1) ̸= u3(t0, λ1). Same happens to

t0’s neighborhood, i.e., ∃δ > 0, s.t., ∀t ∈ (t0 − δ, t0 + δ),
u3(t, λ

′
1) ̸= u3(t, λ1) and sgn(u3(t, λ

′
1) − u3(t, λ1)) is

consistent for any t ∈ (t0 − δ, t0 + δ). As a result,
h(λ1) ̸= h(λ′

1). By definition and the fact that h(·) is
monotonically non-decreasing, the argument is proved.

(2) g(γ) is monotonically strictly increasing in a neighbor-
hood of γ∗ where g(γ∗) = QA.
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Since QA ∈ (0, 1) by the theorem condition, we know that
there exists t0 ∈ (0, T 2/(2σ′2)), such that u3(t0, γ

∗) ∈
(0, 1) (otherwise g(γ∗) = 0 or 1, which contradicts the
theorem condition). Following the same reasoning as in
(1)’s proof, for any γ′ ̸= γ∗ that lies in a sufficiently small
neighborhood of γ∗, we have u3(t0, γ

∗) ̸= u3(t0, γ
′), and

∃δ > 0, s.t., ∀t ∈ (t0 − δ, t0 + δ), u3(t, γ
∗) ̸= u3(t, γ

′)
and sgn(u3(t, γ

∗) − u3(t, γ
′)) is consistent for any t ∈

(t0 − δ, t0 + δ). As a result, g(γ∗) ̸= g(γ′). By definition
and the fact that g(·) is monotonically non-decreasing, the
argument is proved.

H. Extensions of DSRS Computational
Methods

In this appendix, we exemplify a few extensions of DSRS
computational method.

H.1. Certification with Standard and Truncated
Standard Gaussian

In main text and Theorem 5, we focus on DSRS certification
with generalized Gaussian as P and truncated generalized
Gaussian as Q, which has theoretical advantages (Theo-
rem 2). On the other hand, DSRS can also be applied to
other distributions. Concretely, to certify robustness with
standard Gaussian as P and truncated standard Gaussian
as Q, we can directly plug the following theorem’s nu-
merical integration expressions into the described DSRS
algorithm (Alg. 2).

Theorem 8. In Dδ(PA, QA), let r = ∥δ∥2, when
P = N (σ) and Q = Ntrunc(T, σ), let ν :=
ΓCDFd/2(T

2/(2σ2))−1,

R(λ1, λ2) := Pr
ϵ∼P

[p(ϵ) < λ1p(ϵ + δ) + λ2q(vϵ + δ)]

=

{
Et∼Γ(d/2,1)u1(t), λ1 ≤ 0
Et∼Γ(d/2,1)u1(t) + u2(t), λ1 > 0

where

u1(t) =BetaCDF d−1
2

(
min{T 2, 2tσ2 + 2σ2 ln(λ1 + νλ2)}

4rσ
√
2t

−
(σ

√
2t − r)2

4rσ
√
2t

)
,

u2(t) =max

{
0,BetaCDF d−1

2

(
2tσ2 + 2σ2 lnλ1 − (σ

√
2t − r)2

4rσ
√
2t

)

−BetaCDF d−1
2

(
T 2 − (σ

√
2t − r)2

4rσ
√
2t

)}
.

P (λ1, λ2) := Pr
ϵ∼P

[p(ϵ − δ) < λ1p(ϵ) + λ2q(ϵ)]

= Et∼Γ(d/2,1)

{
u3(t, λ1), t ≥ T 2/(2σ2)
u3(t, λ1 + νλ2), t < T 2/(2σ2).

where

u3(t, λ) = BetaCDF d−1
2

(
1

2
+

r2 + 2σ2 lnλ

4rσ
√
2t

)
.

Q(λ1, λ2) := Pr
ϵ∼Q

[p(ϵ − δ) < λ1p(ϵ) + λ2q(ϵ)]

= νEt∼Γ(d/2,1)u3(t, λ1 + νλ2) · I[t ≤ T
2
/(2σ

2
)].

In above equations, Γ(d/2, 1) is gamma distribution and
ΓCDFd/2 is its CDF, and BetaCDF d−1

2
is the CDF of dis-

tribution Beta(d−1
2 , d−1

2 ).

Proof of Theorem 8. The proof largely follows the same
procedure as the proof of Theorem 5. The only difference is
that, since P = N (σ), let rp(∥ϵ∥2) = p(ϵ), different from
Eqn. (88), now

r−1
p (λrp(σ

√
2t))2

=− 2σ2 ln(λrp(σ
√
2t) · (2πσ2)d/2)

=− 2σ2 ln

(
λ

(2πσ2)d/2
exp

(
−2tσ2

2σ2

)
· (2πσ2)d/2

)
=− 2σ2(lnλ− t) = 2tσ2 − 2σ2 lnλ.

(103)
By plugging this equation into the proof of Theorem 5, we
prove Theorem 8.

In practice, DSRS with standard Gaussian and truncated
standard Gaussian as smoothing distributions gives marginal
improvements over Neyman-Pearson-based certification.
This is because, for standard Gaussian distribution, the noise
magnitude is particularly concentrated on a thin shell as re-
flected by the green curve in Figure 4. As a result, the
truncated standard Gaussian as Q either has a tiny density
overlap with P or provides highly similar information (i.e.,
QA ≈ PA). In either case, Q provides little additional
information. Therefore, in practice, we do not use stan-
dard Gaussian and truncated standard Gaussian as P and
Q, which is also justified by Theorem 2, though DSRS can
provide certification for this setting.

H.2. Certification with Generalized Gaussian with
Different Variances

We now consider the robustness certification with smooth-
ing distribution P = N g(k, σ) and additional smoothing
distribution Q = N g(k, β) where σ and β are different (i.e.,
different variance).

H.2.1. COMPUTATIONAL METHOD DESCRIPTION

Hereinafter, for this P and Q we define the radial density
function g(r) := p(x) and h(r) := q(x) for any ∥x∥2 = r,
where p and q are the density functions of P and Q re-
spectively. (λ1g + λ2h)−1(x) := max y s.t. λ1g(y) +
λ2h(y) = x and similarly (λ1g + λ2h)

−1(x) :=
min y s.t. λ1g(y) + λ2h(y) = x.

In this case, we can still have the numerical expression
for P (λ1, λ2), Q(λ1, λ2), and R(λ1, λ2) as shown in Theo-
rem 9.

Theorem 9. When the smoothing distributions P =
N g(k, σ) and additional smoothing distribution Q =
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Table 3. The numerical integration expression for P , Q, and R (see definition in Theorem 5). See Appendix H.2 for notation description.

P (λ1, λ2) = E
x∼Γ( d

2−k)
BetaCDF d−1

2

(
(r + σ′√2x)2 − g−1(λ1g(σ

′√2x) + λ2h(σ
′√2x))2

4rσ′
√
2x

)

Q(λ1, λ2) = E
x∼Γ( d

2−k)
BetaCDF d−1

2

(
(r + β′√2x)2 − g−1(λ1g(β

′√2x) + λ2h(β
′√2x))2

4rβ′
√
2x

)

R(λ1, λ2) = E
x∼Γ( d

2−k)
BetaCDF d−1

2

(
1

2
+

(λ1g + λ2h)−1(g(σ′√2x))2 − r2 − 2xσ′2

4rσ′
√
2x

)
− BetaCDF d−1

2

(
1

2
+

(λ1g + λ2h)
−1(g(σ′√2x))2 − r2 − 2xσ′2

4rσ′
√
2x

)

Table 4. Simplified terms in numerical integration for P and Q, where W is the real-valued branch of the Lambert W function.
Functions P (λ1, λ2) Q(λ1, λ2)

Term to Simplify g−1
(
λ1g(σ

′√2x) + λ2h(σ
′√2x)

)2
g−1

(
λ1g(β

′√2x) + λ2h(β
′√2x)

)2
Simplified k = 0 −2σ′2 ln

(
λ1 exp(−x) + λ2

(
σ′

β′

)d
exp

(
−σ′2

β′2x
))

−2σ′2 ln

(
λ1 exp

(
−β′2

σ′2x
)
+ λ2

(
σ′

β′

)d
exp(−x)

)
Terms k > 0 2kσ′2W

(
x

k

(
λ1 exp(−x) + λ2

(
σ′

β′

)d−2k

exp
(
−σ′2

β′2x
))−1/k

)
2kσ′2W

(
x

k
· β

′2

σ′2

(
λ1 exp

(
−β′2

σ′2

)
+ λ2

(
σ′

β′

)d−2k

exp(−x)

)−1/k
)

N g(k, β), let P (λ1, λ2), Q(λ1, λ2), and R(λ1, λ2) be as
defined in Theorem 5, then P , Q, and R can be computed
by expressions in Table 3.

In Table 3, the numerical integration requires the compu-
tation of several inverse functions. In this subsection, we
simplify the numerical integration expressions for P and
Q by deriving the closed forms of these inverse functions,
as shown in Table 4. In the actual implementation of nu-
merical integration, for P and Q, we use these simplified
expressions to compute; for R, benefited from the unimodal-
ity (Lemma H.2), we deploy a simple binary search to com-
pute.
Theorem 10. When the smoothing distributions P =
N g(k, σ) and Q = N g(k, β), the terms g−1(λ1g(σ

′√2x)+
λ2h(σ

′√2x))2 and g−1(λ1g(β
′√2x) + λ2h(β

′√2x))2 in
P (λ1, λ2) and Q(λ1, λ2)’s computational expressions (see
Table 3) are equivalent to those shown in Table 4.

With the method to compute P , Q, and R for given λ1

and λ2, now the challenge is to solve λ1 and λ2 such that
P (λ1, λ2) = PA and Q(λ1, λ2) = QA.

Luckily, as Theorem 11 shows, for given PA and QA, such
(λ1, λ2) pair is unique. Indeed, such uniqueness holds not
only for this P and Q but also for a wide range of smoothing
distributions.
Theorem 11 (Uniqueness). Suppose distributions P and
Q’s are ℓp-spherically symmetric, i.e., there exists radial
density functions g and h such that p(x) = g(∥x∥p) and
q(x) = h(∥x∥p), then if g and h are continuous and g

h is
continuous and strictly monotonic almost everywhere, for
any given (PA, QA) ∈ R2

+, there is at most one (λ1, λ2)
pair satisfying constraint of Eqn. (12).
The proof is shown in the next subsection, which is based
on Cauchy’s mean value theorem of the probability integral.

With Theorem 11 and Proposition 2, we can use joint binary

search as shown in Alg. 4 to find λ1 and λ2 that can be
viewed as the intersection of two curves. At a high level,
Each time, we leverage the monotonicity to get a point
(λmid

1 , λmid
2 ) on the P ’s curve, then compute corresponding

Q, and update the binary search intervals based on whether
Q(λmid

1 , λmid
2 ) > QA. We shrink the intervals for both λ1

and λ2 (Lines 5 and 7) in Alg. 4 to accelerate the search.
The algorithm is plugged into Line 8 of Alg. 2.

Algorithm 4 DUALBINARYSEARCH for λ1 and λ2.
Data: Query access to P (·, ·) and Q(·, ·), PA and QA

Result: λ1 and λ2 satisfying constraints P (λ1, λ2) =
PA, Q(λ1, λ2) = QA

1 λL
1 ← −M,λU

1 ← +M,λL
2 ← −M,λU

2 ← +M ; /* M is a
large positive number */

2 while λU
1 − λL

1 > eps do
3 λmid

1 ← (λL
1 + λU

1 )/2 Binary search for λmid
2 ∈ [λL

2 , λ
U
2 ]

such that P (λmid
1 , λmid

2 ) = PA ; /* (λmid
1 , λmid

2 ) lies on
red curve */

4 if Q(λmid
1 , λmid

2 ) < QA then
5 λU

1 ← λmid
1 , λL

2 ← λmid
2 ; /* (λmid

1 , λmid
2 ) is right to

intersection */
6 else
7 λL

1 ← λmid
1 , λU

2 ← λmid
2 ; /* (λmid

1 , λmid
2 ) is left to

intersection */
8 end
9 return (λL

1 , λ
L
2 ) ; /* for soundness: R(λL

1 , λ
L
2 ) lower bounds

(D) */

H.2.2. PROOFS

Proof of Theorem 9. The ℓ2-radial density functions
of p(x) and q(x) have these expressions: g(r) ∝
r−k exp(−r2/(2σ′2)) and h(r) ∝ r−k exp(−r2/(2β′2)).
When r increases, r−k, exp(−r2/(2σ′2)), and
exp(−r2/(2β′2)) decrease so that g and h are both
strictly decreasing. Therefore, they have inverse functions,
which are denoted by g−1 and h−1. Now we are ready to
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derive the expressions.

(I.) We start with P :

P (λ1, λ2)

=

∫
Rd

I [p(x− δ) < λ1p(x) + λ2q(x)] p(x)dx

(1.)
=

∫ ∞

0

ydy

∫
p(x)=y

p(x−δ)<λ1p(x)+λ2h(x)

dx

∥∇p(x)∥2

(2.)
=

∫ ∞

0

ydy

∫
p(x)=y

p(x−δ)<λ1p(x)+λ2h(x)

− dx

g′ (g−1(y))

(3.)
=

∫ ∞

0

ydy · π
d/2dg−1(y)d−1

(d/2)!

(
− dx

g′(g−1(y))

)
·

Pr
[
p(x− δ) < λ1p(x) + λ2q(x)

∣∣ p(x) = y
]

(4.)
=

∫ ∞

0

g(t)dt · π
d/2dtd−1

(d/2)!
·

Pr
[
p(x− δ) < λ1g(t) + λ2h(t)

∣∣ ∥x∥2 = t
]

(5.)
=

∫ ∞

0

1

(2σ′2)
d
2−kπ

d
2

· Γ(d/2)

Γ(d/2− k)
·

t−2k exp

(
− t2

2σ′2

)
· π

d/2dtd−1

(d/2)!
·

Pr
[
p(x− δ) < λ1g(t) + λ2h(t)

∣∣ ∥x∥2 = t
]

=

∫ ∞

0

2

(2σ′2)
d
2−kΓ(d2 − k)

td−2k−1 exp

(
− t2

2σ′2

)
·

Pr
[
p(x− δ) < λ1g(t) + λ2h(t)

∣∣ ∥x∥2 = t
]

(6.)
=

1

(2σ′2)
d
2−kΓ(d2 − k)

∫ ∞

0

t
d
2−k−1 exp

(
− t

2σ′2

)
·

Pr
[
p(x− δ) < λ1g(

√
t) + λ2h(

√
t)
∣∣ ∥x∥2 =

√
t
]

(7.)
=

1

Γ(d2 − k)

∫ ∞

0

t
d
2−2k−1 exp(−t)·

Pr
[
p(x− δ) < λ1g(σ

′√2t) + λ2h(σ
′√2t)∣∣ ∥x∥2 = σ′√2t

]
(8.)
= Et∼Γ( d

2−k) Pr
[
p(x− δ) < λ1g(σ

′√2t) + λ2h(σ
′√2t)∣∣ ∥x∥2 = σ′√2t

]
.

As a reminder, d is the input dimension. The Γ(·) here
refer to either the Gamma distribution (in t ∼ Γ(d2 − k))
or Gamma function (in some denominators). In the above
integration: (1.) uses level-set sliced integration as first pro-
posed in (Yang et al., 2020); (2.) leverages the fact that
p(x) is ℓ2-symmetric and g′(·) < 0; (3.) injects the surface
area of ℓ2-sphere with radius g−1(y); (4.) alters the inte-
gral variable: t = g−1(y), which yields dt = dy/g′(t) =
dy/g′(g−1(y)) and y = g(t); (5.) injects the expression

of g(t); (6.) alters the integral variable from t to t2; (7.)
does re-scaling; and (8.) observes that the integral can be
expressed by expectation over Gamma distribution.

Due to the isotropy, let r = ∥δ∥2, we can deem δ =
(r, 0, . . . , 0)T by rotating the axis. Then we simplify the
probability term by observing that{

∥x∥2 = σ′√2t

p(x− δ) < λ1g(σ
′√2t) + λ2h(σ

′√2t)

⇐⇒


x2
1 +

d∑
i=2

x2
i = 2tσ′2

(x1 − r)2 +

d∑
i=2

x2
i ≥ g−1

(
λ1g(σ

′√2t) + λ2h(σ
′√2t)

)2
=⇒x1 ≤

2tσ′2 − g−1
(
λ1g(σ

′√2t) + λ2h(σ
′√2t)

)2
+ r2

2r
.

Lemma H.1 (Lemma I.23; (Yang et al., 2020)). If
(x1, · · · , xd) is sampled uniformly from the unit sphere
Sd−1 ⊆ Rd, then

1 + x1

2
is distributed as Beta

(
d− 1

2
,
d− 1

2

)
. (104)

Combining Lemma H.1 and Appendix H.2.2, we get

Pr
[
p(x− δ) < λ1g(σ

′√2t) + λ2h(σ
′√2t)

∣∣ ∥x∥2 = σ′√2t
]

=BetaCDF d−1
2

(
(r + σ′√2t)2

4rσ′
√
2t

−
g−1

(
λ1g(σ

′√2t) + λ2h(σ
′√2t)

)2
4rσ′
√
2t

)
.

(105)
Injecting Eqn. (105) into (8.) yields the expression shown
in Table 3.

(II.) The integration for Q is similar:

Q(λ1, λ2)

=

∫
Rd

I[p(x− δ) < λ1p(x) + λ2q(x)]q(x)dx

=

∫ ∞

0

ydy

∫
q(x)=y

p(x−δ)<λ1p(x)+λ2q(x)

dx

∥∇q(x)∥2

=

∫ ∞

0

ydy

∫
q(x)=y

p(x−δ)<λ1p(x)+λ2q(x)

− dx

h′(h−1(y))

=

∫ ∞

0

h(t)dt · π
d/2dtd−1

(d/2)!
·

Pr
[
p(x− δ) < λ1p(x) + λ2q(x)

∣∣ ∥x∥2 = t
]

=
1

(2β′2)
d
2−kΓ(d2 − k)

∫ ∞

0

t
d
2−k−1 exp

(
− t

2β′2

)
·
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Pr
[
p(x− δ) < λ1g(

√
t) + λ2h(

√
t)
∣∣ ∥x∥2 =

√
t
]

=Et∼Γ( d
2−k) Pr

[
p(x− δ) < λ1g(β

′√2t) + λ2h(β
′√2t)∣∣ ∥x∥2 = β′√2t

]
,

where

Pr
[
p(x− δ) < λ1g(β

′√2t) + λ2h(β
′√2t)

∣∣ ∥x∥2 = β′√2t
]

=BetaCDF d−1
2

(
(r + β′√2t)2

4rβ′
√
2t

−
g−1

(
λ1g(β

′√2t) + λ2h(β
′√2t)

)2
4rβ′

√
2t

)
.

(106)

(III.) Finally, we derive the integration for R:

R(λ1, λ2)

=

∫
Rd

I [p(x− δ) < λ1p(x) + λ2q(x)] p(x− δ)dx

=

∫
Rd

I [p(x) < λ1p(x+ δ) + λ2q(x+ δ)] p(x)dx

=

∫ ∞

0

ydy

∫
p(x)=y

p(x)<λ1p(x+δ)+λ2q(x+δ)

dx

∥∇p(x)∥2

=

∫ ∞

0

ydy

∫
p(x)=y

p(x)<λ1p(x+δ)+λ2q(x+δ)

− dx

g′(g−1(y))

=

∫ ∞

0

g(t)dt · π
d/2dtd−1

(d/2)!
·

Pr
[
λ1p(x+ δ) + λ2q(x+ δ) > p(x)

∣∣ ∥x∥2 = t
]

=
1

(2σ′2)
d
2−kΓ(d2 − k)

∫ ∞

0

t
d
2−k−1 exp

(
− t

2σ′2

)
·

Pr
[
λ1p(x+ δ) + λ2q(x+ δ) > g(

√
t)
∣∣ ∥x∥2 =

√
t
]

(9.)
= Et∼Γ( d−k

2 ) Pr
[
λ1p(x+ δ) + λ2q(x+ δ) > g(σ′√2t)∣∣ ∥x∥2 = σ′√2t

]
.

To simplify the probability term, this time we have{
∥x∥2 = σ′√2t,

λ1p(x+ δ) + λ2q(x+ δ) > g(σ′√2t)
(107)

⇐⇒


x2
1 +

d∑
i=2

x2
i = 2tσ′2

(λ1g + λ2h)


√√√√(x1 + r)2 +

d∑
i=2

x2
i

 > g(σ′√2t)

(108)

=⇒(λ1g + λ2h)
(√

2tσ′2 + r2 + 2x1r
)
> g(σ′√2t),

(109)

where r = ∥δ∥2 and we deem δ = (r, 0, . . . , 0)T by rotat-
ing the axis.

Lemma H.2. The function (λ1g + λ2h) is unimodal in its
domain (0, +∞).

Proof of Lemma H.2. We expand (λ1g+λ2h) then consider
its derivative.

λ1g(r) + λ2h(r)

=C1λ1r
−2k exp

(
− r2

2σ′2

)
+ C2λ2r

−2k exp

(
− r2

2β′2

)
,

(110)
where C1 and C2 is the constant normalization coefficient
of g and h respectively.

(λ1g + λ2h)
′(r) (111)

=−
(
C1λ12kr

−2k−1 exp

(
− r2

2σ′2

)
+ C1λ1 ·

r−2k+1

σ′2 exp

(
− r2

2σ′2

)
+ C2λ22kr

−2k−1 exp

(
− r2

2β′2

)
+ C2λ2 ·

r−2k+1

β′2 exp

(
− r2

2β′2

))
.

Now we show that

(λ1g + λ2h)
′(r) = 0 (112)

has at most one solution.

When either λ1 = 0 or λ2 = 0, since both g and h are
monotonic, λ1g + λ2 is monotonic and there is no solution.
Thus, we assume λ1, λ2 ̸= 0. We observe that

(λ1g + λ2h)
′(r) = 0 (113)

⇐⇒ C1λ1

(
2k +

r2

σ′2

)
exp

(
− r2

2σ′2

)
+ C2λ2

(
2k +

r2

β′2

)
exp

(
− r2

2β′2

)
= 0 (114)

⇐⇒ − C1λ1

C2λ2
·
2k + r2

σ′2

2k + r2

β′2

= exp

(
r2

2σ′2 − r2

2β′2

)
(115)

x:=r2⇐⇒ − C1λ1

C2λ2
·
2k + x

σ′2

2k + x
β′2

= exp

(
x

2σ′2 − x

2β′2

)
(116)

⇐⇒ − C2λ2

C1λ1
·
2k + x

β′2

2k + x
σ′2

= exp

(
x

2β′2 − x

2σ′2

)
.

(117)
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We focus on Eqn. (117). Without loss of generality, we as-
sume σ′ > β′, then both function x 7→ 2k+x/β′2

2k+x/σ′2 and func-
tion x 7→ exp

(
x/(2β′2)− x/(2σ′2)

)
are monotonically

increasing. If λ1λ2 > 0, the LHS and RHS of Eqn. (117)
are continuous and monotonic in opposite directions. Thus,
there is at most one solution to Eqn. (117). If λ1λ2 < 0, the
LHS is monotonic increasing but the derivative is decreasing
because

−C2λ2

C1λ1
·
2k + x

β′2

2k + x
σ′2

= −C2λ2

C1λ1
·
1 + x

2kβ′2

1 + x
2kσ′2

(118)

where the numerator 1 + x
2kβ′2 is linearly increasing and

the denominator 1 + x
2kσ′2 is also linearly increasing. On

the other hand, the RHS is monotonic increasing and the
derivative is also increasing because

1

2β′2 − 1

2σ′2 > 0. (119)

As a result, the difference function between RHS and LHS
is monotone and there is at most one solution. Thus, we
have shown Eqn. (117) has at most one solution.

Given that (λ1g + λ2h)
′ is also continuous, we thus know

the function (λ1g + λ2h) is unimodal.

Moreover, since g and h approach 0 when r → ∞, (λ1g +
λ2h) approaches 0 when r → ∞.

We define

(λ1g + λ2h)−1(y) := max y′

s.t. λ1g(y
′) + λ2h(y

′) = x, (120)

(λ1g + λ2h)
−1(y) := min y′

s.t. λ1g(y
′) + λ2h(y

′) = x. (121)

Then, Lemma H.2 and (λ1g + λ2h) → 0 when r → ∞
imply that, when y > 0,

y0 ∈
(
(λ1g + λ2h)

−1(y), (λ1g + λ2h)−1(y)
)

⇐⇒ λ1g(y0) + λ2h(y0) > y.
(122)

We simplify Eqn. (109) by observing that g(σ′√2t) > 0:

Eqn. (109)

⇐⇒
√

2tσ′2 + r2 + 2x1r

∈
(
(λ1g + λ2h)

−1(g(σ′√2t)),

(λ1g + λ2h)−1(g(σ′√2t))
)

(123)

⇐⇒
(λ1g + λ2h)

−1(g(σ′√2t))2 − 2tσ′2 − r2

2r
≤ x1

≤ (λ1g + λ2h)−1(g(σ′√2t))2 − 2tσ′2 − r2

2r
.

(124)

Combining Lemma H.1 with Eqn. (124) we get

Pr
[
λ1p(x+ δ) + λ2q(x+ δ) > g(σ′√2t)

∣∣ ∥x∥2 = σ′√2t
]

=BetaCDF d−1
2

(
1

2
+

(λ1g + λ2h)−1(g(σ′√2t))2 − 2tσ′2 − r2

4rσ′
√
2t

)

− BetaCDF d−1
2

(
1

2
+

(λ1g + λ2h)
−1(g(σ′√2t))2 − 2tσ′2 − r2

4rσ′
√
2t

)
.

(125)
Combining the above equation with (9.) yields the expres-
sion shown in Table 3.

Proof of Theorem 10. To prove the theorem, the main work
we need to do is deriving the closed-form expression for the
inverse function g−1, where

g(r) =
1

(2σ′2)
d
2−kπ

d
2

·
Γ(d2 )

Γ(d2 − k)
r−2k exp

(
− r2

2σ2

)
.

(126)

(I.) When k = 0,

Eqn. (126)

⇐⇒ y =
1

(2σ′2π)
d
2

exp

(
−g−1(y)2

2σ′2

)
(127)

⇐⇒ g−1(y)2 = −2σ′2 ln
(
(2σ′2π)

d
2 y
)
. (128)

(II.) When k > 0, we notice that the Lambert W
function W is the inverse function of w 7→ wew, i.e.,
W (x) exp(W (x)) = x. We let the normalizing coefficient
of g(r) be

C :=
1

(2σ′2)
d
2−kπ

d
2

·
Γ(d2 )

Γ(d2 − k)
. (129)

Then

Eqn. (126)

⇐⇒ y = Cg−1(y)−2k exp

(
−g−1(y)2

2σ′2

)
(130)

⇐⇒ C

y
= g−1(y)2k exp

(
g−1(y)2

2σ′2

)
(131)

⇐⇒
(
C

y

) 1
k

= g−1(y)2 exp

(
g−1(y)2

kσ′2

)
(132)

⇐⇒ 1

2kσ2

(
C

y

) 1
k

= W−1

(
g−1(y)2

2kσ′2

)
(133)

⇐⇒ g−1(y)2 = 2σ′2kW

(
1

2kσ′2

(
C

y

) 1
k

)
. (134)

Plugging in Eqns. (128) and (134) to g−1(λ1g(σ
′√2x) +

λ2h(σ
′√2x))2 and g−1(λ1g(β

′√2x)+λ2h(β
′√2x))2 for

k = 0 and k > 0 case, then results in Table 4 follow from
algebra.
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Proof of Theorem 11. We prove the theorem by contradic-
tion. Suppose that the (λ1, λ2) that satisfy the constraint of
Eqn. (12) are not unique, and we let (λa

1 , λ
a
2) and (λb

1, λ
b
2)

be such two pairs. Without loss of generality, we assume
λa
1 ̸= λb

1.

If λa
2 = λb

2, we have P (λa
1 , λ

a
2) = P (λb

1, λ
b
2), i.e., the

region

{x− δ : p(x− δ) ∈
[
min{λa

1 , λ
b
1}p(x) + λa

2q(x),

max{λa
1 , λ

b
1}p(x) + λa

2q(x)
)}

(135)
has zero mass under distribution P . Given that P and Q
have positive and continuous density functions almost ev-
erywhere, the volume of the region is non-zero thus the
mass under distribution P is also non-zero. Therefore, we
also have λa

2 ̸= λb
2. Because of the partial monotonicity of

P and Q functions (shown in Section 5.3), without loss of
generality, we assume

λa
1 < λb

1, λa
2 > λb

2. (136)

Lemma H.3. There exists a point r0 ≥ 0, either (1) or (2)
is satisfied.

(1) When r > r0,

Pr[p(ϵ− δ) < λa
1p(ϵ) + λa

2q(ϵ)
∣∣ ∥ϵ∥p = r]

≥ Pr[p(ϵ− δ) < λb
1p(ϵ) + λb

2q(ϵ)
∣∣ ∥ϵ∥p = r];

when r < r0,

Pr[p(ϵ− δ) < λa
1p(ϵ) + λa

2q(ϵ)
∣∣ ∥ϵ∥p = r]

≤ Pr[p(ϵ− δ) < λb
1p(ϵ) + λb

2q(ϵ)
∣∣ ∥ϵ∥p = r].

(2) When r > r0,

Pr[p(ϵ− δ) < λa
1p(ϵ) + λa

2q(ϵ)
∣∣ ∥ϵ∥p = r]

≤ Pr[p(ϵ− δ) < λb
1p(ϵ) + λb

2q(ϵ)
∣∣ ∥ϵ∥p = r];

when r < r0,

Pr[p(ϵ− δ) < λa
1p(ϵ) + λa

2q(ϵ)
∣∣ ∥ϵ∥p = r]

≥ Pr[p(ϵ− δ) < λb
1p(ϵ) + λb

2q(ϵ)
∣∣ ∥ϵ∥p = r].

Note that in Pr[·
∣∣ ∥ϵ∥p = r], the vector ε ∈ Rd is uniformly

sampled from the ℓp-sphere of radius r.

Proof of Lemma H.3. For a given r, since P and Q are both
ℓp-spherically symmetric, and the density functions are both
positive almost everywhere, as long as

λa
1g(r) + λa

2h(r) ≤ λb
1g(r) + λb

2h(r), (137)

then

[p(ϵ− δ) < λa
1p(ϵ) + λa

2q(ϵ)
∣∣ ∥ϵ∥p = r]

≤[p(ϵ− δ) < λb
1p(ϵ) + λb

2q(ϵ)
∣∣ ∥ϵ∥p = r].

(138)

It still holds if we change the “≤“’s to “≥”’s in both
Eqns. (137) and (138). Meanwhile,

λa
1g(r)+λa

2h(r) ≤ λb
1g(r)+λb

2h(r) ⇐⇒ g(r)

h(r)
>

λb
2 − λa

2

λa
1 − λb

1

.

(139)
Since g(r)/h(r) is strictly monotonic, there exists at most
one point r0 ≥ 0 that divides

g(r)

h(r)
>

λb
2 − λa

2

λa
1 − λb

1

and
g(r)

h(r)
<

λb
2 − λa

2

λa
1 − λb

1

. (140)

If that r0 exists, from Eqns. (137) to (139) the lemma state-
ment follows.

Now we only need to show that r0 exists. Assume that the
point r0 does not exist, it implies that for all r, we have
either

λa
1g(r) + λa

2h(r) < λb
1g(r) + λb

2h(r) (141)

or

λa
1g(r) + λa

2h(r) > λb
1g(r) + λb

2h(r) (142)

while P (λa
1 , λ

a
2) = P (λb

1, λ
b
2) > 0 and Q(λa

1 , λ
a
2) =

Q(λb
1, λ

b
2) > 0. It implies that for almost every r,

Pr[p(ϵ− δ) ∈ (a, b)
∣∣ ∥ϵ∥p = r] = 0 (143)

where

a = min{λa
1g(r) + λa

2h(r), λ
b
1g(r) + λb

2h(r)},
b = max{λa

1g(r) + λa
2h(r), λ

b
1g(r) + λb

2h(r)}.
(144)

This violates the continuous assumption on both P and Q.
Therefore, point r0 exists.

With Lemma H.3, we define auxiliary function D : R+ →
R such that

D(r) =Pr[p(ϵ− δ) < λa
1p(ϵ) + λa

2q(ϵ) | ∥ϵ∥p = r]

− Pr[p(ϵ− δ) < λb
1p(ϵ) + λb

2q(ϵ) | ∥ϵ∥p = r].
(145)

We let S(r) be the surface area of ℓp sphere of radius r.
Then the P and Q can be written in integral form:

P (λ1, λ2) =

∫ ∞

0

Pr[p(ε− δ) < λ1p(ε) + λ2p(ε) |

∥ε∥p = r] · g(r)S(r)dr, (146)

Q(λ1, λ2) =

∫ ∞

0

Pr[p(ε− δ) < λ1p(ε) + λ2p(ε) |
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∥ε∥p = r] · h(r)S(r)dr. (147)

Since P (λa
1 , λ

a
2) = P (λb

1, λ
b
2) and Q(λa

1 , λ
a
2) =

Q(λb
1, λ

b
2) by our assumption, simple arrangement yields∫ r0

0

D(r)g(r)S(r)dr =

∫ ∞

r0

(−D(r))g(r)S(r)dr ̸= 0,

(148)∫ r0

0

D(r)h(r)S(r)dr =

∫ ∞

r0

(−D(r))h(r)S(r)dr ̸= 0.

(149)

As Lemma H.3 shows, D(r) where r ∈ [0, r0] always has
the same sign as −D(r) where r ∈ [r0, +∞], and the last
inequality (̸= 0) is again due to the continuity of p and q and
the fact that P (λa

1 , λ
a
2) > 0 and Q(λa

1 , λ
a
2) > 0. Now we

can divide Eqn. (148) by Eqn. (149) and apply the Cauchy’s
mean value theorem, which yields

D(ξ1)g(ξ1)S(ξ1)

D(ξ1)h(ξ1)S(ξ1)
=

D(ξ2)g(ξ2)S(ξ2)

D(ξ2)h(ξ2)S(ξ2)
, (150)

where ξ1 ∈ (0, r0) and ξ2 ∈ (r0, +∞). Apparently, it
requires

g(ξ1)

h(ξ1)
=

g(ξ2)

h(ξ2)
. (151)

However, g/h is strictly monotonic. By contradiction, there
is no distinct pair (λa

1 , λ
a
2) and (λb

1, λ
b
2) satisfying the con-

straint of Eqn. (12) simultaneously.

Remark. Suppose P and Q are ℓp-radial extended Gaus-
sian/Laplace distributions, i.e., their density functions p(x)
and q(x) are

p(x) ∝ ∥x∥−k
p exp (−∥x∥p/σ)α ,

q(x) ∝ ∥x∥−k
p exp (−∥x∥p/β)α

(152)

with α > 0 (for Gaussian α = 2 and for Laplace α = 1).
Note that this is a broader family than the family considered
in DSRS shown in the main text. we have

g

h
∝ exp(r/β − r/σ)α (153)

that is strictly monotonic. Thus, Theorem 11 is applicable
for this large family of smoothing distributions that are
commonly used in the literature (Lécuyer et al., 2019; Cohen
et al., 2019; Yang et al., 2020; Zhang et al., 2020a; Zhai
et al., 2020; Jeong & Shin, 2020).

H.3. Discussion on Certification of Other ℓp Norms

DSRS can also be extended to provide a certified robust
radius under ℓp norm other than ℓ2.

Different from the case of ℓ2 certification, for other ℓp
norm the challenge is to compute P (λ1, λ2), Q(λ1, λ2),

and R(λ1, λ2) as defined in Theorem 5. For ℓ2 certification,
as shown by Theorems 5 and 9, there exist closed-form
expressions for these quantities that can be efficiently im-
plemented with numerical integrations. However, for other
ℓp norms, finding such closed-form expressions for P , Q,
and R is challenging.

Luckily, we notice that P , Q, and R are all probability-
based definitions, as long as we can effectively sample from
P and Q and effectively compute the density functions p(·)
and q(·), we can estimate these function quantities from the
empirical means of Monte-Carlo sampling.

Compared to numerical integration based ℓ2 certification,
Monte-Carlo sampling has sampling uncertainty and effi-
ciency problems. Here we discuss these two problems in
detail and how we can alleviate them.

Sampling Uncertainty and Mitigations. The empirical
means for P and Q are stochastic, which breaks the nice
properties of P and Q (shown in Section 5.3) with respect to
(λ1, λ2) as the different queries to P and Q fluctuate around
the actual value. Therefore, the joint binary search (Alg. 4)
may fail to return the correct (λ1, λ2) pair. Thus, we pro-
pose a stabilization trick: the same set of samples is used
when querying P and Q during the joint binary search.
With this same set of samples, it can be easily verified that
the nice properties (Propositions 1 and 2) still hold even
if P and Q are empirical means. To guarantee the certi-
fication soundness in the context of probabilistic Monte-
Carlo sampling, we introduce a different set of samples
to test whether the solved (λ1, λ2) indeed upper bounds
the intersection point (if the test fails we fall back to the
classical Neyman-Pearson-based certification though it sel-
dom happens). Since the test is also probabilistic, we need
to accumulate this additional failing probability and use
the lower bound of the confidence interval for soundness,
which results in 1 − 2α = 99.8% certification instead of
1− α = 99.9% as in classical randomized smoothing cer-
tification (Cohen et al., 2019; Yang et al., 2020). Note that
the existence of additional confidence intervals caused by
Monte-Carlo sampling makes DSRS based on Monte-Carlo
sampling slightly looser than DSRS based on numerical
integration.

Efficiency Concern and Mitigations. Traditionally we
need to sample several (denoted as M , in our implemen-
tation we set M = 5 × 104) high-dimensional vectors for
each P or Q computation, which induces the efficiency con-
cern. With the usage of the aforementioned stabilization
trick, now we only sample one set of M samples during
the whole joint binary search instead of during each P and
Q computation. Combining with the testing phase sam-
pling, the whole algorithm needs to sample 2M vectors
rather than O(M log2 M) without the stabilization trick, so
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it greatly solves the efficiency concern. Moreover, we notice
that for the samples {ϵi}Mi=1 we only need to care about its
densities {p(εi)}Mi=1, {q(εi)}Mi=1 and {p(εi−δ)}Mi=1. Thus,
we store only these three quantities instead of the whole d-
dimensional vectors {ϵi}Mi=1, reducing the space complexity
from O(M × d) to O(M).

These techniques significantly improve efficiency in prac-
tice. Although DSRS based on Monte-Carlo sampling is still
slightly looser and slower than DSRS based on numerical
integration, DSRS based on Monte-Carlo sampling makes
certifying robustness under other ℓp norms feasible. In this
work, we focus on the ℓ2 norm, because additive randomized
smoothing is not optimal for other norms (e.g., ℓ1 (Levine
& Feizi, 2021)) or the state-of-the-art certification can be di-
rectly translated from ℓ2 certification (e.g., ℓ∞ (Yang et al.,
2020) and semantic transformations (Li et al., 2021)). More-
over, to the best of our knowledge, standard ℓ2 certification
is the most challenging setting where additive randomized
smoothing achieves state-of-the-art and no other work can
achieve visibly tighter robustness certification than standard
Neyman-Pearson certification (Yang et al., 2020; Levine
et al., 2020; Mohapatra et al., 2020).

I. Implementation and Optimizations
In this appendix, we discuss the implementation tricks and
optimizations, along with our simple heuristic for selecting
the hyperparameter T in the additional smoothing distribu-
tion Q = N g

trunc(k, T, σ).

I.1. Implementation Details

We implement DSRS in Python with about two thousand
lines of code. The tool uses PyTorch2 to query a given
base classifier with Monte-Carlo sampling in order to de-
rive the confidence intervals [PA, PA] and [QA, QA]. Then,
the tool builds the whole DSRS pipeline on SciPy3 and
NumPy4. Specifically, the numerical integration is imple-
mented with scipy.integrate.quad() method. We
exploit the full independence across the certification for
different input instances and build the tool to be fully paral-
lelizable on CPUs. By default, we utilize 10 processes, and
the number of processes can be dynamically adjusted.

The tool is built in a flexible way that adding new smoothing
distributions is not only theoretically straightforward but
also easy in practice. In the future, we plan to extend the
tool to 1) provide GPU support; 2) reuse existing certifica-
tion results from previous instances with similar confidence
intervals to achieve higher efficiency. We will also support
more smoothing distributions.

2http://pytorch.org/
3https://scipy.org/scipylib/index.html
4https://numpy.org/

In the implementation, we widely use the logarithmic scale,
since many quantities in the computation have varied scales.
For example, since the input dimension d is typically over
500 on a real-world dataset, the density functions p and q
decay very quickly along with the increase of noise mag-
nitude. Another example is the input variable for ln(·)
and W (·) in Theorem 5. These variables are exponen-
tial with respect to the input dimension d so they could
be very large or small. To mitigate this, we perform all
computations with varied scales in logarithmic scale to im-
prove the precision and floating-point soundness. For ex-
ample, we implement a method lnlogadd to compute
log(λ1 exp(x1) + λ2 exp(x2)) and apply method wlog in
(Yang et al., 2020) to compute W (exp(x)). We remark that
in the binary search for dual variables (see Section 5.3), we
also use the logarithmic scale for λ1 and λ2.

The code, model weights, and all experiment data are
publicly available at https://github.com/llylly/
DSRS.

I.2. T Heuristics

As briefly outlined in Section 6.1, we apply a simple yet
effective heuristic to determine the hyperparameter T in
additional smoothing distribution Q = N g

trunc(k, T, σ).

Concretely, we first sample the prediction probability from
the original smoothing distribution P and get the confidence
lower bound PA of PA = fP(x0)y0

. Then, we use the
following empirical expression to determine T from PA:

T = σ

√
2d

d− 2k
ΓCDF−1

d/2−k(p), (154)

where

p = max{−0.08 ln(1− PA) + 0.2, 0.5}. (155)

It can be viewed as we first parameterize T by p and then
find a simple heuristic to determine p by PA.

The T ’s parameterization with p is inspired by the prob-
ability mass under original smoothing distribution P =
N g(k, σ) if true-decision region is concentrated in a ℓ2-ball
centered at x0. Concretely, from P’s definition,

Pr
ϵ∼P

[∥ϵ∥2 ≤ T ] = p. (156)

Then, we use a randomly sampled CIFAR-10 training set
containing 1, 000 points with models trained using Con-
sistency (Jeong & Shin, 2020) under σ = 0.50 to sweep
all p ∈ {0.1, 0.2, · · · , 0.9}. We plot the minimum p and
maximum p that gives the highest certified robust radius
as a segment and find Eqn. (155) fits the general tendency
well as shown in Appendix I.2. Thus, we use this simple
heuristic to determine T . Empirically, this simple heuris-
tic generalizes well and is competitive with more complex
methods as shown in Appendix J.

http://pytorch.org/
https://scipy.org/scipylib/index.html
https://numpy.org/
https://github.com/llylly/DSRS
https://github.com/llylly/DSRS
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Figure 7. Our p heuristic (Eqn. (155)) shown as orange curve fits
the generalization tendency of optimal p ranges (shown as blue
segments) well.

Another heuristic that we have deployed is the fall-back
strategy. When the empirical probability P̃A = 1, i.e., if for
all the sampled ϵ ∼ P , F (x0 + ϵ) = y0, then we fall back
to still using P instead of using another distribution Q for
the second round of sampling. This strategy is inspired by a
finding that, with the fixed sampling budget, if PA is already
very high, it is more efficient to use more samples to further
increase the confidence interval of PA rather than querying
imprecise information under another distribution Q. Notice
that such strategy does not break the high-confidence sound-
ness of our certification, because Pr[P̃A = n/N |PA ≤
t] ≥ Pr[P̃A = n/N ∧ P̃ half

A = 1 |PA ≤ t] for any t < 1
and Bernoulli distributed sampling (which is our case), and
we use Bernoulli confidence interval that corresponds to
Pr[P̃A = n/N |PA ≤ t]. Due to the tight experiment time,
we only deployed this strategy on ImageNet evaluation but
not on MNIST and CIFAR-10 evaluations.

I.3. Training Strategy for Generalized Gaussian
Smoothing

We train the base classifiers on each dataset using Gaus-
sian augmentation training (Cohen et al., 2019), Consis-
tency training (Jeong & Shin, 2020), and SmoothMix train-
ing (Jeong et al., 2021), which are typical training meth-
ods for randomized smoothing. We do not consider other
training approaches such as (Zhai et al., 2020; Salman
et al., 2019; Li et al., 2019a; Carmon et al., 2019) be-
cause: (1) Some training approaches either require addi-
tional data (Carmon et al., 2019; Salman et al., 2019), or
relatively time-consuming (Salman et al., 2019), or are re-
ported to be not as effective as later approaches (Li et al.,
2019a); (2) Selected training approaches are widely used or
achieve state-of-the-art with high training efficiency.

On MNIST, for all training methods, we use a convolu-
tional neural network with 4 convolutional layers and 3
fully connected layers following Cohen et al. (2019) as the

base classifiers’ architecture. On CIFAR-10, for all training
methods, we use ResNet-110 (He et al., 2016) as the base
classifiers’ architecture. These architecture settings follow
the prior work on smoothed classifier training (Cohen et al.,
2019; Salman et al., 2019; Zhai et al., 2020).

On both MNIST and CIFAR-10, for all training methods,
we train for 150 epochs. The learning rate is 0.01 and is de-
cayed by 0.1 at the 50th and 100th epoch. For Consistency
training, the hyperparameter λ = 5 on MNIST and λ = 20
on CIFAR-10. We use two noise vectors per training
batch per instance. These are the best hyperparameters
reported in (Jeong & Shin, 2020). The batch size is 256
on both MNIST and CIFAR-10 following (Jeong & Shin,
2020). For SmoothMix training, we directly use the
best hyperparameters from their open-source repository:
https://github.com/jh-jeong/smoothmix/
blob/main/EXPERIMENTS.MD.

On ImageNet, we use ResNet-50 (He et al., 2016) as the
base classifiers’ architecture and finetune from the open-
source model trained by Cohen et al. (Cohen et al., 2019)
with Gaussian smoothing. We train for 10 epochs due to
the expensive training cost on ImageNet and we remark that
better results can be achieved with a larger training time
budget. The learning rate is 0.001 and is decayed at the
end of every epoch by 0.1. For Consistency training, the
hyperparameter λ = 5 and we use two noise vectors per
training batch per instance following the best hyperparam-
eters reported in (Jeong & Shin, 2020). For SmoothMix
training, since the open-source repository does not contain
the best hyperparameters, we select the hyperparameters as
suggested in the original paper (Jeong et al., 2021).

During training, the training samples are augmented by
adding noises following training smoothing distribution. In
typical training approaches (Cohen et al., 2019; Carmon
et al., 2019; Salman et al., 2019; Zhai et al., 2020; Jeong
& Shin, 2020), the training smoothing distribution is set
to be the same as the original smoothing distribution P
for constructing the smoothed classifier. However, for our
generalized Gaussian N g(k, σ) as P with large k, we find
this strategy gives a poor empirical performance.

To better train the base classifier for our original smoothing
distribution P with large k, we introduce a warm-up stage
on the training smoothing distribution. Suppose our original
smoothing distribution P for constructing the smoothed
classifier is N g(k0, σ) We let e0 = 100 be the number of
warm-up epochs on MNIST and CIFAR-10, or e0 = 10000
be the number of warm-up steps on ImageNet. In the first e0
epochs (on MNIST and CIFAR-10) or steps (on ImageNet),
we use the training smoothing distribution with smaller k.
Formally, in the eth epoch/step where e ≤ e0, the training

https://github.com/jh-jeong/smoothmix/blob/main/EXPERIMENTS.MD
https://github.com/jh-jeong/smoothmix/blob/main/EXPERIMENTS.MD
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smoothing distribution P ′ = N g(k, σ) where

k = ⌈k0 − k
1−e/e0
0 ⌉. (157)

For later epochs/steps, we use the original smoothing distri-
bution P itself as the training smoothing distribution. This
strategy gradually increases the k of training smoothing dis-
tribution throughout the training, so that the base classifier
can be a better fit for the final desired distribution P . Using
this strategy, the smoothed classifier constructed from our
trained base classifier has similar certified robustness com-
pared to standard Gaussian augmentation under classical
Neyman-Pearson-based certification.

J. Additional Experimental Results
In this appendix, we present additional experiment results
and studies.

J.1. Empirical Study Setup of Concentration Property

In Figure 4 in Appendix B, we present our investigation of
the decision regions of base classifiers. The investigation
follows the following protocol: (1) We choose the base clas-
sifier from (Salman et al., 2019) on ImageNet trained for
σ = 0.5 Gaussian smoothing as the subject. The reason is
that this base classifier is one of the state-of-the-art certifi-
ably robust classifiers on the large-scale ImageNet dataset
and our code uses the same preprocessing parameters so it is
easy to adopt their model. (2) We pick every 500-th image
from the test set of the ImageNet dataset to form a subset
of 100 samples. (3) We filter out the samples where the
base classifier cannot classify correctly even without adding
any noise, which results in 89 remaining samples. (4) For
each of these 89 samples, for each perturbation magnitude
r, we uniformly sample 1000 perturbation vectors from the
hypersphere with ℓ2-radius r and compute the empirical
probability of true-prediction, where the step size of r is 10.

Figure 4 implies that for a vast majority of samples, the
true-prediction samples are highly concentrated on an ℓ2
ball around the clean input since there exists apparent ℓ2
magnitude thresholds where the true-prediction probability
is almost 1 within the thresholds and almost 0 beyond the
thresholds. This implies that the concentration property may
be achievable for real-world base classifiers in randomized
smoothing.

In Figure 9, we follow the same protocol but plot the land-
scape of base classifiers trained using generalized Gaussian
distribution (instead of standard Gaussian distribution as in
Figure 4). By comparing Figure 9 and Figure 4, we find
that although base classifiers in Figure 4 can achieve bet-
ter certified robustness using Neyman-Pearson certification
and generalized Gaussian smoothing (compare Figure 2(b)
and Neyman-Pearson rows in Table 10), they also sacrifice

the concentration property, which can explain why DSRS
improvements are much smaller on models in Section 6
compared with models in Figure 2(b). Thus, as discussed in
Section 6, there may be a large space for exploring training
approaches that favor DSRS certification by preserving the
concentration property.

J.2. Effectiveness of T -Heuristics and Attempts on
Better Optimization Tricks

Better Optimization Tricks. For obtaining a tighter certi-
fied radius, we should make the support of N g

trunc(k, T, σ)
more aligned with the decision region while keeping the
QA large enough. So except using a simple heuristic, we
can also turn the search for an appropriate value of T into
an optimization problem. In order to make the optimization
more stable, here we will construct the optimization based
on Pcon that is more scale-invariant, and then transform it to
get the final appropriate T = σ

√
2ΓCDF−1

d/2(Pcon).

The final optimization objective is now built as Pcon =
argmin−QA + λ

2 (Pcon − PA)
2, where λ is a hyperpa-

rameter that controls the relative weight of the two loss
terms. The QA here is estimated by sampling from the
distribution N g

trunc(k, T, σ) in which the T is determined
by Pcon; however, the actual process of such sampling is
implemented by rejecting the sampled noise whose norm
is bigger than T . Therefore, there will be no gradient ob-
tained for Pcon through the backward of the loss, namely,
the optimized objective. So instead, we attempt to approxi-
mate the gradient comes from the first loss term −QA with
GQA

= Eϵ∼Q[∇||ϵ||2CrossEntropyLoss(f(x0 + ϵ), y0)].
Then, we will only have the gradient information, and there
is no explicit form of QA anymore. The PA is estimated
with the PA which we have already obtained, so the final
estimation of the gradient for Pcon is GQA

+ λ(Pcon − PA).

Experiment Setting. The Pcon is optimized for different
input test images respectively, and the initialized Pcon is
set to 0.7. For each input, we will update Pcon 20 steps
on datasets MNIST and CIFAR10 while updating only 10
steps on dataset ImageNet to reduce time complexity. For
each step, we will sample 2, 000 times for estimating the
term GQA

, and the learning rate is set to 2, 000. Besides,
to avoid the Pcon being optimized too large or too small,
we will clip the final optimized Pcon within 0.1 and 0.9.
Since the optimization is a bit time-consuming, we only
test it on CIFAR10 with σ = 0.5 and test it on MNIST
and ImageNet with σ = 1.0. Different λ is also tried for
different datasets and different training methods for getting
better performance.

Performance. The final results are shown in Table 5, and
the certification approach based on the optimization tricks
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mentioned above is denoted as “Opt” in the table. As we
can see, our simple T -Heuristics could still be competitive
with the method based on complicated optimization but with
a cheaper cost.

J.3. Full Curves and Separated Tables

J.3.1. SEPARATE TABLES BY SMOOTHING VARIANCE

Due to the page limit, in the main text (Section 6, Table 2),
we aggregate the certified robust accuracy across models
with different smoothing variance σ ∈ {0.25, 0.50, 1.00}.
To show the full landscape, we present the certified robust
accuracy for each model trained with each variance. The
evaluation protocol is the same as the one in the main text,
and the tables for MNIST, CIFAR-10, and ImageNet models
are Table 6, Table 7, and Table 8 respectively. We observe
that DSRS outperforms standard Neyman-Pearson certifica-
tion for a wide range of radii.

J.3.2. CURVES

Following the convention (Cohen et al., 2019; Salman et al.,
2019), we plot the certified robust accuracy - radius curve
in Figure 8.

The curves correspond to the certified robust accuracy data
in Table 2 (in Section 6), i.e., the certified robust accu-
racy under each radius r is the maximum certified ro-
bust accuracy among models trained with variance σ ∈
{0.25, 0.50, 1.00}. We observe that among all medium to
large radii (including those not shown in Table 2), DSRS pro-
vides higher certified robust accuracy than Neyman-Pearson
certification. The margin of DSRS is relatively small on
CIFAR-10 but is apparent on MNIST and ImageNet. Es-
pecially, the margins on ImageNet reflect that DSRS is
particularly effective on large datasets.

J.3.3. ACR RESULTS

In the literature, another common metric of certified robust-
ness is ACR (average certified radius) (Zhai et al., 2020;
Jeong & Shin, 2020; Jeong et al., 2021). In Table 9, we re-
port the ACR comparison between Neyman-Pearson-based
certification and our DSRS certification. Across the three
smoothing variance choices σ ∈ {0.25, 0.50, 1.00}, we find
σ = 1.00 yields the highest ACR, so we only report the
ACR for models smoothed with σ = 1.00. As we can see,
in all cases, DSRS significantly improves over Neyman-
Pearson-based certification in terms of ACR.

J.4. Using Distribution with Different Variance as Q

We take the models trained with Gaussian augmentation (Co-
hen et al., 2019) and variance σ = 1.00 as examples. We
use “DSRS-trunc” to represent DSRS using truncated gener-

alized Gaussian as Q, and “DSRS-var” to represent DSRS
using generalized Gaussian with different variance as Q,
and compare their robustness certification (i.e., certified ro-
bust accuracy) in Table 10. From the table, we find that
on MNIST and CIFAR-10, DSRS-var is better than DSRS-
trunc, whereas on ImageNet, DSRS-trunc is slightly better
than DSRS-var. Both DSRS-trunc and DSRS-var are signif-
icantly better than Neyman-Pearson-based certification.

To investigate the reason, we follow the protocols for study-
ing the concentration property in Appendix J.1 to plot the
landscape of models on MNIST, CIFAR-10, and ImageNet,
as shown in Figure 9. From the figure, we find that the
curves on ImageNet are generally steeper, which corre-
sponds to that the concentration property is better satis-
fied on ImageNet. Therefore, we conjecture that when the
concentration property (see Definition 3) is better satisfied,
DSRS with truncated Gaussian as Q is better than Gaussian
with different variance as Q.

J.5. Comparison with Higher-Order Randomized
Smoothing

It is difficult to have a direct comparison with higher-order
randomized smoothing (Mohapatra et al., 2020; Levine et al.,
2020), which is the only work to the best of our knowledge
that uses additional information beyond PA to tighten the
robustness certification in randomized smoothing. This dif-
ficulty comes from the following reasons: (1) Higher-order
randomized smoothing only supports standard Gaussian
smoothing, while DSRS is particularly useful with general-
ized Gaussian smoothing. (2) All experiment evaluations
in higher-order randomized smoothing are conducted with
large sampling numbers (N = 2 × 105 on CIFAR-10 and
N = 1.25 × 106 on ImageNet) that makes the evaluation
costly, while DSRS is designed for practical sampling num-
bers (N = 105). (3) The code is not open-source yet (Mo-
hapatra et al., 2020). Nonetheless, we can directly compare
with the curves provided by Mohapatra et al. (2020).

We capture the certified robust accuracy vs. ℓ2 radius r
curves from (Mohapatra et al., 2020) in Figure 10. As
we can see, compared with Neyman-Pearson-based cer-
tification, the improvements from higher-order random-
ized smoothing are small especially on the large ImageNet
dataset despite the excessive sampling numbers (1.25×106).
In contrast, as shown in Figure 8, within only 105 sampling
number, DSRS is visibly tighter than Neyman-Pearson-
based certification. In fact, to the best of our knowledge,
DSRS is the first model-agnostic approach that is visibly
tighter than Neyman-Pearson-based certification under ℓ2
radius.
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Table 5. ℓ2 certified robust accuracy w.r.t. different radii r for different certification approaches.

Dataset Training Certification Certified Accuracy under Radius r
Method Approach 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

MNIST

Gaussian Aug. Neyman-Pearson 95.5 % 93.5 % 90.0 % 86.1 % 80.4 % 72.8 % 61.4 % 50.2 % 36.6 % 25.2 % 14.5 % 8.5 %

(σ = 1.00)
DSRS(T -heuristic) 95.5 % 93.5 % 90.2 % 86.9 % 81.4 % 74.4 % 64.6 % 55.2 % 42.8 % 30.9 % 20.3 % 11.3 %
Opt (λ = 7e− 05) 95.5% 93.5% 90.0% 86.9% 81.7% 74.9% 65.6% 55.8% 43.8% 30.5% 19.1% 10.2%

Consistency Neyman-Pearson 94.5 % 92.6 % 89.3 % 85.9 % 80.7 % 74.4 % 65.9 % 56.9 % 44.1 % 34.4 % 23.3 % 12.8 %

(σ = 1.00)
DSRS(T -heuristic) 94.5 % 92.8 % 89.3 % 86.3 % 81.4 % 76.1 % 68.3 % 59.5 % 50.7 % 39.8 % 30.7 % 20.0 %
Opt (λ = 6e− 06) 94.5% 92.8% 89.3% 86.2% 81.2% 75.8% 68.2% 59.6% 50.5% 39.6% 30.7% 19.8%

Certified Accuracy under Radius r
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

CIFAR-10

Gaussian Aug. Neyman-Pearson 60.4 % 55.2 % 51.3 % 45.9 % 40.8 % 35.6 % 30.1 % 24.3 % 20.0 % 16.7 % 13.0 % 10.1 %

(σ = 0.50)
DSRS(T -heuristic) 60.6 % 55.5 % 51.5 % 46.8 % 42.1 % 37.3 % 32.5 % 27.4 % 22.8 % 19.3 % 16.0 % 12.7 %
Opt (λ = 3e− 06) 60.6% 55.5% 51.3% 46.7% 42.0% 37.2% 32.5% 27.4% 23.0% 19.3% 16.0% 12.5%

Consistency Neyman-Pearson 53.1 % 50.5 % 48.6 % 45.5 % 43.6 % 41.5 % 38.7 % 36.7 % 35.1 % 32.0 % 29.1 % 25.7 %

(σ = 0.50)
DSRS(T -heuristic) 53.1 % 50.7 % 48.7 % 45.7 % 44.0 % 41.8 % 39.6 % 37.8 % 36.0 % 34.4 % 31.3 % 28.6 %
Opt (λ = 4e− 06) 53.1% 50.7% 48.7% 45.7% 44.0% 41.8% 39.5% 37.8% 36.0% 34.4% 31.4% 28.4%

ImageNet

Gaussian Aug. Neyman-Pearson 57.5 % 55.1 % 52.2 % 49.7 % 47.0 % 43.9 % 40.8 % 38.1 % 35.0 % 33.2 % 29.6 % 25.3 %

(σ = 1.00)
DSRS(T -heuristic) 57.7 % 55.6 % 52.7 % 51.0 % 48.4 % 45.5 % 43.1 % 40.2 % 37.9 % 35.3 % 32.8 % 30.5 %
Opt (λ = 1e− 05) 57.7% 55.5% 52.4% 50.5% 48.2% 45.0% 42.9% 40.0% 38.0% 35.0% 32.7% 29.9%

Consistency Neyman-Pearson 55.9 % 54.4 % 53.0 % 51.2 % 48.2 % 46.2 % 44.2 % 41.7 % 39.1 % 36.4 % 34.4 % 32.1 %

(σ = 1.00)
DSRS(T -heuristic) 56.0 % 54.6 % 53.1 % 51.8 % 49.9 % 47.4 % 45.7 % 44.2 % 41.7 % 39.3 % 37.8 % 35.8 %
Opt (λ = 1e− 05) 56.0% 54.6% 53.1% 51.8% 49.7% 47.4% 45.3% 44.0% 41.6% 39.3% 37.8% 35.9%

Table 6. MNIST: Certified robust accuracy for models smoothed with different variance σ certified with different certification approaches.

Variance Training Certification Certified Accuracy under Radius r
Method Approach 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

0.25

Gaussian Aug. Neyman-Pearson 97.9% 96.4% 92.1%
(Cohen et al., 2019) DSRS 97.9% 96.6% 92.7%

Consistency Neyman-Pearson 98.4% 97.5% 94.4%
(Jeong & Shin, 2020) DSRS 98.4% 97.5% 95.4%

SmoothMix Neyman-Pearson 98.6% 97.6% 96.5%
(Jeong et al., 2021) DSRS 98.6% 97.7% 96.8%

0.50

Gaussian Aug. Neyman-Pearson 97.8% 96.9% 94.6% 88.4% 78.7% 52.6%
(Cohen et al., 2019) DSRS 97.8% 97.0% 95.0% 89.8% 83.4% 59.1%

Consistency Neyman-Pearson 98.4% 97.3% 96.0% 92.3% 83.8% 67.5%
(Jeong & Shin, 2020) DSRS 98.4% 97.3% 96.0% 93.5% 87.1% 71.8%

SmoothMix Neyman-Pearson 98.2% 97.1% 95.4% 91.9% 85.1% 73.0%
(Jeong et al., 2021) DSRS 98.1% 97.1% 95.9% 93.4% 87.5% 76.6%

1.00

Gaussian Aug. Neyman-Pearson 95.2% 91.9% 87.7% 80.6% 71.2% 57.6% 41.0% 25.5% 13.6% 6.2% 2.1% 0.9%
(Cohen et al., 2019) DSRS 95.1% 91.8% 88.2% 81.5% 73.6% 61.6% 48.4% 34.1% 21.0% 10.6% 4.4% 1.2%

Consistency Neyman-Pearson 93.9% 90.9% 86.4% 80.8% 73.0% 61.1% 49.1% 35.6% 21.7% 10.4% 4.1% 1.9%
(Jeong & Shin, 2020) DSRS 93.9% 91.1% 86.9% 81.7% 75.2% 65.6% 55.8% 41.9% 31.4% 17.8% 8.6% 2.8%

SmoothMix Neyman-Pearson 92.0% 88.9% 84.4% 78.6% 69.8% 60.7% 49.9% 40.2% 31.5% 22.2% 12.2% 4.9%
(Jeong et al., 2021) DSRS 92.2% 89.0% 84.8% 79.7% 72.0% 63.9% 54.4% 46.2% 37.6% 29.2% 18.5% 7.2%

K. Extended Related Work Discussion
In this appendix, we discuss related work from two branches:
training approaches for randomized smoothing, and data-
dependent randomized smoothing. Both branches aim to im-
prove the certified robustness of randomized smoothing. For
tighter certification approaches leveraging additional infor-
mation, a detailed discussion can be found in Appendix L.1.
For more related work we refer the interested readers to
recent surveys and books (Liu et al., 2021; Li et al., 2020b;
Albarghouthi, 2021).

To improve the certified robustness of randomized smooth-
ing, efforts have been made on both the training (Li et al.,
2019a; Zhai et al., 2020; Salman et al., 2019; Jeong & Shin,
2020) and the certification sides (Lécuyer et al., 2019; Co-
hen et al., 2019; Li et al., 2019a; Yang et al., 2020; Zhang

et al., 2020a; Yang et al., 2022). On the training side, data
augmentation (Cohen et al., 2019), regularization (Li et al.,
2019a; Zhai et al., 2020; Jeong & Shin, 2020), and adver-
sarial training (Salman et al., 2019) help to train stable
base models under noise corruptions so that higher certi-
fied robustness for a smoothed classifier can be achieved.
In this work, we focus on certification, and these training
approaches can be used in conjunction with ours to provide
higher certified robustness.

Another potential way to improve the certified robustness of
randomized smoothing is to dynamically change the smooth-
ing distribution P based on the input toward maximizing
the certified radius (Alfarra et al., 2020; Eiras et al., 2021;
Schuchardt et al., 2022). In this scenario, the certification
needs to take into account that the attacker may adaptively
mislead the pipeline to choose a “bad” smoothing distri-
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Table 7. CIFAR-10: Certified robust accuracy for models smoothed with different variance σ certified with different certification
approaches.

Variance Training Certification Certified Accuracy under Radius r
Method Approach 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

0.25

Gaussian Aug. Neyman-Pearson 56.1% 35.7% 13.4%
(Cohen et al., 2019) DSRS 57.4% 39.4% 17.3%

Consistency Neyman-Pearson 61.8% 50.9% 34.7%
(Jeong & Shin, 2020) DSRS 62.5% 52.5% 37.8%

SmoothMix Neyman-Pearson 63.9% 53.3% 38.4%
(Jeong et al., 2021) DSRS 64.7% 55.5% 41.1%

0.50

Gaussian Aug. Neyman-Pearson 53.7% 41.3% 27.7% 17.1% 9.1% 2.8%
(Cohen et al., 2019) DSRS 54.1% 42.7% 30.6% 20.3% 12.6% 4.0%

Consistency Neyman-Pearson 49.2% 43.9% 38.0% 32.3% 23.8% 18.1%
(Jeong & Shin, 2020) DSRS 49.6% 44.1% 38.7% 35.2% 28.1% 19.7%

SmoothMix Neyman-Pearson 53.2% 47.6% 40.2% 34.2% 26.7% 19.6%
(Jeong et al., 2021) DSRS 53.3% 48.5% 42.1% 35.9% 29.4% 21.7%

1.00

Gaussian Aug. Neyman-Pearson 40.2% 32.6% 24.7% 18.9% 14.9% 10.2% 7.5% 4.1% 2.0% 0.7% 0.1% 0.1%
(Cohen et al., 2019) DSRS 40.3% 33.1% 25.9% 20.6% 16.1% 12.5% 8.4% 6.4% 3.5% 1.8% 0.7% 0.1%

Consistency Neyman-Pearson 37.2% 32.6% 29.6% 25.9% 22.5% 19.0% 16.4% 13.8% 11.2% 9.0% 7.1% 5.1%
(Jeong & Shin, 2020) DSRS 37.1% 32.5% 29.8% 27.1% 23.5% 20.9% 17.6% 15.3% 13.1% 10.9% 8.9% 6.5%

SmoothMix Neyman-Pearson 43.2% 39.5% 33.9% 29.1% 24.0% 20.4% 17.0% 13.9% 10.3% 7.8% 4.9% 2.3%
(Jeong et al., 2021) DSRS 43.2% 39.7% 34.9% 30.0% 25.8% 22.1% 18.7% 16.1% 13.2% 10.2% 7.1% 3.9%

Table 8. ImageNet: Certified robust accuracy for models smoothed with different variance σ certified with different certification ap-
proaches.

Variance Training Certification Certified Accuracy under Radius r
Method Approach 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

0.25

Gaussian Aug. Neyman-Pearson 57.1% 41.6% 17.4%
(Cohen et al., 2019) DSRS 58.4% 47.9% 24.4%

Consistency Neyman-Pearson 59.8% 49.8% 36.9%
(Jeong & Shin, 2020) DSRS 60.4% 52.4% 40.4%

SmoothMix Neyman-Pearson 46.7% 38.2% 28.2%
(Jeong et al., 2021) DSRS 47.4% 40.0% 29.8%

0.50

Gaussian Aug. Neyman-Pearson 53.6% 48.3% 43.3% 36.8% 31.4% 24.5%
(Cohen et al., 2019) DSRS 53.7% 49.9% 44.7% 39.3% 34.8% 27.4%

Consistency Neyman-Pearson 53.6% 48.3% 43.3% 36.8% 31.4% 24.5%
(Jeong & Shin, 2020) DSRS 53.7% 49.9% 44.7% 39.3% 34.8% 27.4%

SmoothMix Neyman-Pearson 38.7% 33.5% 28.8% 24.6% 18.1% 13.5%
(Jeong et al., 2021) DSRS 39.1% 34.9% 30.3% 26.8% 21.6% 15.6%

1.00

Gaussian Aug. Neyman-Pearson 42.5% 37.2% 33.0% 29.2% 24.8% 21.4% 17.6% 13.7% 10.2% 7.8% 5.7% 3.6%
(Cohen et al., 2019) DSRS 42.5% 38.1% 34.4% 30.2% 27.0% 23.3% 21.3% 18.7% 14.2% 11.0% 9.0% 5.7%

Consistency Neyman-Pearson 40.0% 38.3% 34.2% 31.8% 28.7% 25.6% 22.1% 19.1% 16.1% 14.0% 10.6% 8.5%
(Jeong & Shin, 2020) DSRS 40.2% 38.5% 35.4% 32.6% 30.7% 28.1% 25.4% 22.6% 19.6% 17.4% 14.1% 10.4%

SmoothMix Neyman-Pearson 29.8% 25.6% 21.8% 19.2% 17.0% 14.2% 11.8% 10.1% 8.9% 7.2% 6.0% 4.6%
(Jeong et al., 2021) DSRS 29.7% 26.2% 23.0% 20.6% 18.0% 15.7% 14.0% 12.1% 9.9% 8.4% 7.2% 5.3%
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Figure 8. Certified robust accuracy - radius curve corresponding to Table 2.

Table 9. Average certified radius (ACR) statistics. The smoothing
variance hyperparameter σ = 1.00. The evaluation protocol is the
same as that in the main text.

Training Method Certification MNIST CIFAR-10 ImageNet

Gaussian
Augmentation

Neyman-Pearson 1.550 0.447 0.677
DSRS 1.629 0.469 0.750

Relative Improvement +5.10% +4.92% +10.78%

Consistency
Neyman-Pearson 1.645 0.636 0.796

DSRS 1.730 0.659 0.862
Relative Improvement +5.17% +3.62% +8.29%

SmoothMix
Neyman-Pearson 1.716 0.676 0.490

DSRS 1.806 0.712 0.525
Relative Improvement +5.24% +5.33% +7.14%

bution. Therefore, additional costs such as memorizing
training data need to be paid to defend such adaptive robust-

ness vulnerabilities. A recent work (Súkenı́k et al., 2021)
shows that input-dependent randomized smoothing may not
bring substantial improvements in certified robustness. In
DSRS, we select the additional smoothing distribution Q dy-
namically based on the input, which may appear like input-
dependent randomized smoothing. However, we select such
distribution Q only for certification purposes, and the orig-
inal distribution P that is used to construct the smoothed
classifier remains static. Thus, we do not need to consider
the existence of adaptive attackers. Indeed, for any smooth-
ing distribution Q, with DSRS, we generate valid robustness
certification for the static smoothed classifier F̃P .
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(a) MNIST model.
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(b) CIFAR-10 model.
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(c) ImageNet model.

Figure 9. Probability of true-prediction w.r.t. ℓ2 length of perturbations for base classifiers from Gaussian augmentation training studied in
Appendix J.4. Figures are plotted following the same protocol as in Appendix J.1.

Table 10. Comparison of DSRS certified robust accuracy with different types of additional smoothing distributionQ and Neyman-Pearson-
based certification. Detail experiment settings are in Appendix J.4.

Dataset Certification Certified Accuracy under Radius r
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

MNIST
Neyman-Pearson 95.2% 91.9% 87.7% 80.6% 71.2% 57.6% 41.0% 25.5% 13.6% 6.2% 2.1% 0.9%

DSRS-trunc 95.1% 91.8% 87.9% 81.3% 72.9% 60.2% 46.1% 30.9% 17.4% 9.4% 3.6% 1.2%
DSRS-var 95.1% 91.8% 88.2% 81.5% 73.6% 61.6% 48.4% 34.1% 21.0% 10.6% 4.4% 1.2%

CIFAR-10
Neyman-Pearson 40.2% 32.6% 24.7% 18.9% 14.9% 10.2% 7.5% 4.1% 2.0% 0.7% 0.1% 0.1%

DSRS-trunc 40.3% 32.9% 25.5% 20.1% 15.7% 11.5% 8.0% 5.5% 2.7% 1.5% 0.6% 0.1%
DSRS-var 40.3% 33.1% 25.9% 20.6% 16.1% 12.5% 8.4% 6.4% 3.5% 1.8% 0.7% 0.1%

ImageNet
Neyman-Pearson 42.5% 37.2% 33.0% 29.2% 24.8% 21.4% 17.6% 13.7% 10.2% 7.8% 5.7% 3.6%

DSRS-trunc 42.5% 38.1% 34.4% 30.2% 27.0% 23.3% 21.3% 18.7% 14.2% 11.0% 9.0% 5.7%
DSRS-var 42.9% 38.5% 35.0% 31.0% 26.5% 23.2% 21.0% 18.3% 14.6% 10.5% 8.2% 5.3%

L. Discussions on Generalizing DSRS
Framework

In this appendix, we first introduce prior work that lever-
ages additional information for certification in randomized
smoothing, then generalize our DSRS as a more general
framework to theoretically compare with the related work
and highlight future directions.

L.1. Existing Work on Leveraging Additional
Information for Certification

We discuss all known work that leverages more information
to achieve tighter robustness certification for randomized
smoothing prior to this paper to the best of our knowledge.

Additional Black-Box Information. Our DSRS lever-
ages additional information to tighten the certification for
randomized smoothing. We leverage the information from
an additional smoothing distribution. This information can
be obtained from the base classifier that we only have query
access on the predicted label. We call the information from
this limited query access “black-box” information. The certi-
fication approaches that only require black-box information
can be applied to any classification model regardless of the
model structure. Thus, they are usually more general and
more scalable. The classical Neyman-Pearson certification
only requires black-box information.

Besides our DSRS, the only other form of additional black-
box information that is leveraged is the higher-order in-
formation (Levine et al., 2020; Mohapatra et al., 2020).
Formally, our additional black-box information has the form

Pr
ϵ∼Q

[F0(x+ ϵ) = y]. (158)

In contrast, the higher-order information, especially second-
order information used by Levine et al. (2020); Mohapatra
et al. (2020) has the form

∥∇fP
0 (x0)y0

∥p = ∥∇ Pr
ϵ∼P

[F0(x0 + ϵ) = y0]∥p (159)

that is also shown to be estimable given the black-box query
access. However, the higher-order information has several
limitations: (1) It is hard to leverage the information beyond
the second order. Therefore, only second-order information
is used in existing certification approaches yet. However,
to achieve optimal tightness, one needs to leverage infinite
orders of information, which brings an infinite number of
constraints and is thus intractable. In contrast, we show that
extra information from only one additional distribution suf-
fices to derive a strongly tight certification. (2) In practice,
the second-order information shows marginal improvements
in the widely used ℓ2 and ℓ∞ certification settings on real-
world datasets (Levine et al., 2020; Mohapatra et al., 2020)
and even such improvements require a large number of sam-
ples (usually in million order instead of ours 105).



Double Sampling Randomized Smoothing

(a) (Mohapatra et al., 2020, Fig-
ure 2(b)): Higher-order randomized
smoothing on CIFAR-10.

(b) (Mohapatra et al., 2020, Figure 4): Higher-order randomized smoothing on
ImageNet for models trained with different smoothing variances.

Figure 10. Higher-order randomized smoothing certification (solid curves) compared with standard Neyman-Pearson-based certifica-
tion (dotted curves).

Dvijotham et al. (2020) also propose to use additional infor-
mation to tighten the robustness certification for randomized
smoothing (“full-information” setting). They formalize the
tightest possible certification and compare it with Neyman-
Pearson-based certifiation (“information-limited” setting),
but in practice, they do not try to leverage information from
distributions other than P .

Constraining Model Structure. If we discard the “black-
box information” constraint, we can obtain tighter robust-
ness certification than classical Neyman-Pearson. For exam-
ple, knowing the model structure can benefit the certification.
Lee et al. (2019) show that when the base classifier is a de-
cision tree, we can use dynamic programming to derive a
strongly tight certification against ℓ0-bounded perturbations.
Awasthi et al. (2020) show that, if the base classifier first
performs a known low-rank projection, then works on the
low-rank projected space, for the corresponding smoothed
classifier, we can have a tighter certification on both ℓ2 and
ℓ∞ settings. However, it is challenging to find a projec-
tion such that the model preserves satisfactory performance
while the projection rank is low. Indeed, the approach is
evaluated on DCT basis to show the improvement on ℓ∞ cer-
tification, and there exists a gap between the actual achieved
certified robustness and the state of the art. We do not com-
pare with these approaches since they impose additional
assumptions on the base classifiers so their applicable sce-
narios are limited, and currently, the state-of-the-art base
classifier does not satisfy their imposed constraints under
ℓ2 and ℓ∞ certification settings. Recently, for ℓ1 certifica-
tion, a deterministic and improved smoothing approach (a
type of non-additive smoothing mechanism) is proposed
to handle the case where input images are constrained in
space {0, 1/255, · · · , 244/255, 1}d (Levine & Feizi, 2021).
This could be viewed as constraining the attack space from
another aspect and implies that certified robustness can be
improved by better smoothing mechanisms, which is orthog-
onal to our work that focuses on certification for existing
smoothing mechanisms.

Confidence Smoothing. A group of certification ap-
proaches assumes that the base classifier outputs normalized
confidence on the given input, and the smoothed classifier
predicts the class with the highest expectation of normal-
ized confidence under noised input. This assumption can be
viewed as a special type of “Constraining Model Structure”.
Under this assumption, we can query and approximate the
quantile of the confidence under noised input: F0(x0 + ϵ)
where ϵ ∼ P . With this information, we can leverage the
Neyman-Pearson lemma in a more delicate way to provide
a tighter (higher) lower bound of the expected confidence
under perturbation, i.e., Eϵ∼PF0(x+ δ + ϵ).

These certification approaches provide tighter certification
than the classical Neyman-Pearson for the smoothed classi-
fier that predicts the class with the highest expected normal-
ized confidence. They are also useful for regression tasks
such as object detection in computer vision as shown in
(Chiang et al., 2020). However, for the classification task,
for utilizable base classifiers (i.e., benign accuracy > 50%
under noise), if we simply set the predicted class to have
100% confidence, we only increase the certified radius of
the classifier and the certification for this “one-hot” base
classifier only requires classical Neyman-Pearson. Thus,
these certification approaches, e.g., (Kumar et al., 2020a),
may not achieve higher certified robustness on the classifi-
cation task than Neyman-Pearson and therefore we do not
compare with them.

L.2. General Framework

Focusing on the certification with additional black-box in-
formation, we generalize the DSRS to allow more general
additional information.

Definition 5 (General Additional Black-Box Information).
For given base classifier F0, suppose the true label at x0 is
y0, for certifying robustness at x0, the general additional
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black-box information has the form

∫
Rd

f1(x)I [F0(x) = y0] dx = c1,

· · ·∫
Rd

fi(x)I [F0(x) = y0] dx = ci,

· · ·∫
Rd

fN (x)I [F0(x) = y0] dx = cN ,

(160)

where fi and ci are pre-determined; fi is integrable in Rd

and ci ∈ R for 1 ≤ i ≤ N .
Remark. Obtaining the information in Eqn. (160) requires
only the black-box access to whether F0(x) equals to y0.
We define the general additional black-box information in
this way because: (1) The information from finite points is
useless since the smoothed classifier has zero probability
mass on finite points, so the useful information is based on
integration; (2) To provide a lower bound of F̃P

0 (x0 + δ)y0
,

we only need to care whether F0(x) equals to y0 in region
of interest.

Examples. (1) Our DSRS, the additional information
Eϵ∼Q[f(ϵ)] = QA instantiates Definition 5 by setting
N = 1, f1(·) = q(· − x0) and c1 = QA. (2) In (Mo-
hapatra et al., 2020; Levine et al., 2020), the second-order
information ∇fP

0 (x0) instantiates Definition 5 by setting
N = d, fi(x) = −∇p(x − x0)i, and ci =

(
∇fP

0 (x0)
)
i

according to Theorem 1 in (Mohapatra et al., 2020). We
remark that due to the sampling difficulty, instead of using
the whole vector ∇fP

0 (x0) as the information, second-order
smoothing (Mohapatra et al., 2020; Levine et al., 2020) uses
its p-norm in practice. However, using the full information
only gives tighter certification so we consider this a more
ideal variant.

Then, we can extend the constrained optimization problem
(C) in Section 5.1 to (Cext) to accommodate the general
information as such

minimize
f

Eϵ∼P [f(δ + ϵ)] (161)

s.t. Eϵ∼P [f(ϵ)] = PA,∫
Rd

f1(ϵ)f(ϵ)dϵ = c1,

· · ·∫
Rd

fN (ϵ)f(ϵ)dϵ = cN ,

0 ≤ f(ϵ) ≤ 1 ∀ϵ ∼ Rd.

Similarly, by the strong duality (Theorem 3), to solve the
certification problem

∀δ s.t. ∥δ∥p ≤ r, Cext
δ (PA, c1, . . . , cN ) > 0.5, (162)

we only need to solve the dual problem (Dext):

maximize
η,λ1,...,λN∈R

Pr
ϵ∼P

[
p(ϵ) < ηp(ϵ+ δ) +

N∑
i=1

λifi(ϵ+ δ)

]
(163)

s.t. Pr
ϵ∼P

[
p(ϵ− δ) < ηp(ϵ) +

N∑
i=1

λifi(ϵ)

]
= PA,

∫
Rd

I

[
p(ϵ− δ) < ηp(ϵ) +

N∑
i=1

λifi(ϵ)

]
f1(ϵ)dϵ = c1,

· · ·∫
Rd

I

[
p(ϵ− δ) < ηp(ϵ) +

N∑
i=1

λifi(ϵ)

]
fN (ϵ)dϵ = cN .

We remark that this generalization shares a similar
spirit as one type of generalization of Neyman-Pearson
Lemma (Chernoff & Scheffe, 1952; Mohapatra et al., 2020).
Following the same motivation, Dvijotham et al. (2020) try
to generalize the certification by adding more constraints
in their “full-information setting”. However, it is unclear
whether their constraints in f -divergences form have the
same expressive power as ours in practice (i.e., the practi-
cality of theoretically tight Hockey-Stick divergence). A
study of these different types of generalization would be our
future work.

More importantly, we believe that the pipeline of DSRS can
be adapted to solve this generalized dual problem. We hope
that this generalization and the corresponding DSRS could
enable the exploration and exploitation of more types of
additional information for tightening the robustness certifi-
cation of randomized smoothing.

Implications. The generalized DSRS framework allows
us to explicitly compare different types of additional infor-
mation. For example, comparing our additional distribu-
tion information and higher-order information, we find that
(1) for additional distribution information, from Theorem 1
and Corollary 1, the strong tightness can be acheived for
N = C − 1 where C is the number of classes; (2) for
higher-order information, from (Mohapatra et al., 2020,
Asymptotic-Optimality Remark), the strong tightness can
be achieved when all orders of information are used, i.e.,
N → ∞. This comparison suggests that our additional
information from another smoothing distribution should be
more efficient.

Another implication is that, from Corollary 1, under multi-
class setting, with proper choices of the (C − 1) additional
smoothing distributions, if we base DSRS on solving dual
problem (Dext), the DSRS can achieve strong tightness in
multiclass setting.
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L.3. Limitations and Future Directions

Despite the promising theoretical and empirical results of
DSRS, DSRS still has some limitations that open an avenue
for future work. We list the following future directions:
(1) tighter certification from a more ideal additional smooth-
ing distribution Q: there may exist better smoothing distri-
bution Q or better methods to optimize hyperparameters in
Q than what we have considered in this work in terms of cer-
tifying larger certified radius in practice; (2) better training
approach for DSRS: there may be a large space for exploring
training approaches that favor DSRS certification since all
existing training methods are designed for Neyman-Pearson-
based certification. We believe that advances in this aspect
can boost the robustness certification with DSRS to achieve
state-of-the-art certified robustness. (3) better additional
information: more generally, besides the prediction proba-
bility from an additional smoothing distribution, there may
exist other useful additional information for certification in
randomized smoothing. We hope our generalization of the
DSRS framework in this appendix can inspire future work
in tighter and more efficient certification for randomized
smoothing.
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