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l Cost saving: print time and material usage

l Typically takes hours of time …

Important 3DP criteria we consider
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Support material waste in FDM



FDM: Fusion Deposition Modeling
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Fuse deposition modeling 
(FDM) – minimizing total 

printed material



Powder-based printing
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Powder-based 3D printing – 
minimizing object height



l Cost saving: print time and material usage

l Best utilization of limited print volume

Important 3DP criteria we consider
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Cannot fit



Chopper
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[Luo et al. SIG Asia 2012]

l Decompose a large 3D object

l Each part fits inside print volume



l Decompose and pack a 3D object optimally

l Combine packing with decomposition

l Best utilization of limited print volume

Decompose-and-pack (DAP) problem
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l Decompose and pack a 3D object optimally

l Combine packing with decomposition

l Best utilization of limited print volume

l Important: do not decompose-and-then-pack

l Two optimization problems must be strongly coupled

l Seems to be a very difficult problem

Decompose-and-pack (DAP) problem
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l Let us only decompose, no packing

l But beyond just fitting into print volume (Chopper)

l Decompose so each part is best for 3D printing

l So what geometric property would be best?

Re-thinking of an “easier” problem?
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Pyramidal (terrain) shape

A base

Vertical orientation
A pyramidal shape models a height 

function over the base.

No support (waste) material for layered 
(FDM) printing; also shorter print time.
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Pyramidal (terrain) shape

A base

Vertical orientation

Pyramidal vs. convex decompositions
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l Goal: decompose into min# of pyramidal parts

l How hard is this problem for humans?

2014: pyramidal decomposition

What is the best 
you can do?
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l Goal: decompose into min# of pyramidal parts

l How hard is this problem for humans?

2014: pyramidal decomposition

What is the best 
you can do? Results obtained by human users
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l Goal: decompose into min# of pyramidal parts

l How hard is this problem for humans?

2014: pyramidal decomposition

Our solution Results obtained by human users
[Hu et al. 2014]
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l Exact pyramidal decomposition is NP-hard
l Proved for 3D shapes and 2D polygons with holes 

[Fekete and Mitchell 2001]

l Exact decomposition may lead to too many parts

Exact vs. approximation decomposition

l New problem: approx pyramidal decomposition
l APD: Each part is only approximately pyramidal

l Still seeks as few parts as possible
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Pyramidality measure

Pyramidality estimated along three directions u1, u2 and u3 

l Pyramidality of part is estimated over all directions
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Pyramidality measure

l Pyramidality of part is estimated over all directions

l Take direction with the least (estimated) material 

waste relative to projected area

Projected area
Material waste
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Pyramidality estimated along three directions u1, u2 and u3 



l Convert APD into an Exact Cover Problem (ECP)

Construction algorithm

A block partition
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l Convert APD into an Exact Cover Problem (ECP)

Construction algorithm

A block partition

A cover consisting of a set of candidate pyramidal parts

19



l Convert into an Exact Cover Problem (ECP)

Construction algorithm

A block partition Solutions to ECP by Algorithm X [Knuth 2000]

ECP is NP-complete.
Algorithm X efficiently enumerates all solutions to ECP.
Any objective function can be employed to pick solutions.  
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l Convert into an Exact Cover Problem (ECP)

Construction algorithm

A block partition Solutions to ECP by Algorithm X [Knuth 2000]

How to get the set of candidate pyramidal parts?

21



l Progressively build larger & larger building blocks

l Key clustering criterion: group elements that are 

likely to belong to large pyramidal parts

A clustering approach
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Results
Results combining material 
saving and part count
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Results

Best results in terms of 
only material saving

Results combining material 
saving and part count
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Paper and press coverage
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l Better utilize the print volume, material, and time
l Dapper: Decompose AND Pack (DAP) a 3D object

l Especially attractive for powder-based 3D printing

Back to DAP

[Chen et al. 2015]
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DAP problem
l Given a 3D shape S and print volume V, decompose S into 

a small number of parts to be packed compactly into V

S V
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DAP problem

l Geared towards efficient 3D printing
l support material, build time, and assembly cost

l Adjustable for powder and FDM 3D printing

l Object function combines part count with printing 
criteria (height for powder and gap for FDM)DAP: Must solve D AND 

P, not D-and-THEN-P
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Making the problem tractable

l Restrict the geometric primitives for DAP
l Search space too large for arbitrary primitives 

l Arbitrary primitives are also difficult to pack

l Restrict cut and packing directions

l Settling for heuristics and sub-optimality
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Primitives: pyramidal parts

l Not only printing-friendly, also packing-friendly
l No inner pockets to fill
l Packing = matching of only one side, the “teeth” side

No inner 
pockets
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Primitives: pyramidal parts

l Not only printing-friendly, also packing-friendly
l No inner pockets to fill
l Packing = matching of only one side, the “teeth” side

l Decomposition: closure under axial cuts 
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Further search reduction
l Decompose into and pack only pyramidal polycubes

l Voxelize input shape and only axial cuts
l Closure property with pyramidal primitives

l 90x degree rotations for packing
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Further search reduction
l Decompose into and pack only pyramidal polycubes

l Voxelize input shape and only axial cuts
l Closure property with pyramidal primitives

l 90x degree rotations for packing

l Problem is more fun: like playing 3D Tetris!
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Algorithm overview

Initial decomposition Global DAP optimization Local refinement

Pyramidal polycubes

Optimal pile

Compact pile

Depth and breadth 
pruning via local 
and global DAP 
objectives

Priority-driven 
& bounded 
beam search 

Cut-n-Pack Pack

[Chen et al. SIG Asia 2015]
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DAP like playing Tetris (video)
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l Fabrication-aware (input) design: optimize the 
input 3D shape for fabrication = what to print

From “what” to “how” to print
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Tool path planning
l Tool path fill = space-filling curve

l Choice of tool path affects print time, inner fill 
+ surface quality
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Tool path planning
l Tool path fill = space-filling curve

l Most popular tool path pattern: zigzag
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Tool path planning
l Tool path fill = space-filling curve

l Most popular tool path pattern: zigzag

Disconnected 
paths

Overfill

Rough 
boundaries
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Zigzag fill: discontinuity
start point
end point

turn 
off

turn on

bad fill quality

bad fill quality

A continuous tool path 
minimizes on/offs

void path
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Zigzag: sharp turns
start point
end point

Jagged surface boundary

print head

De-acceleration 
then acceleration

Long and low-curvature 
tool paths are desirable!
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l Less sharp turns
l Conform to boundary

l Contours disconnected 
l Disconnected “pockets”

Contour-parallel paths (CPP): iso-contour
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l Conformation to boundary
l Less sharp turns than zigzag

l Connect iso-contours by “offset”

From CPP to conventional spirals
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[Held et al. 2014]
Disconnected spirals
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l Can connect two spirals:
l inside-out & outside-in
l Then stuck: both start and 

end points are enclosed

l Impossible to connect all

Is it always possible to fill a connected 2D 
region using a globally continuous path with 

low number of sharp turns? 

Idea: connect the spirals?
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Pierre de Fermat (1636)

Key idea: Fermat spirals!



Fermat spiral: compelling properties

l Similarities to spiral and CPPs 

l Conform to surface boundaries
l Less sharp turns than zigzag
l Continuity for simple shapes

l New: start & end on boundary

l Key: can place start & end 
points freely along boundary

l Allows connection of all Fermat 
spirals for global continuity 

start point end point

start point
end point
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1. Apply Euclidean distance transform to input 2D 
layer to obtain iso-contours and set of pockets

Key steps
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Key steps

Parallel contours One re-routing To a spiral Re-route to Fermat spiral

1. Apply Euclidean distance transform to input 2D 
layer to obtain iso-contours and set of pockets

2. For each pocket, covert contour parallel paths 
into a Fermat spiral with start and end points 
next to each other
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Key steps
1. Apply Euclidean distance transform to input 2D 

layer to obtain iso-contours and set of pockets

2. For each pocket, covert contour parallel paths 
into a Fermat spiral with start and end points 
next to each other

3. Connect all Fermat spirals via a traversal and 
local re-routing

4. Localized post-smoothing of final curve
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l Introducing Fermat spirals as a new kind of 2D fill 
pattern, contrasting Hilbert and Peano curves

l Tool path planning based on connected Fermat 
spirals (CFS) to continuously fill 2D region

CFS

New kind of space-filling curves
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Some results
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Some results
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Some stats
Number of 

disconnected segments
Percentage of sharp turn (high-

curvature) points

Z: zigzag paths
C: contour-parallel paths

F: connected Fermat spiral paths
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Connected Fermat spirals in video
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Appearance on Two-Minute Papers
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