Pyramids, Tetris, and Spirals: New Geometry Problems for 3D Printing

CMPT 464/764

Lecture 15

Important 3DP criteria we consider

- Cost saving: print time and material usage
 - Typically takes hours of time ...

FDM: Fusion Deposition Modeling

Fuse deposition modeling (FDM) – minimizing total printed material

Powder-based printing

Powder-based 3D printing – minimizing object height

Important 3DP criteria we consider

- Cost saving: print time and material usage
- Best utilization of limited print volume

Chopper

- Decompose a large 3D object
 - Each part fits inside print volume

[Luo et al. SIG Asia 2012]

Decompose-and-pack (DAP) problem

- Decompose and pack a 3D object optimally
 - Combine packing with decomposition
 - Best utilization of limited print volume

Decompose-and-pack (DAP) problem

- Decompose and pack a 3D object optimally
 - Combine packing with decomposition
 - Best utilization of limited print volume
- Important: do not decompose-and-then-pack
 - Two optimization problems must be strongly coupled
- Seems to be a very difficult problem

Re-thinking of an "easier" problem?

- Let us only decompose, no packing
- But beyond just fitting into print volume (Chopper)
- Decompose so each part is best for 3D printing
- So what geometric property would be best?

Pyramidal (terrain) shape

Pyramidal (terrain) shape

2014: pyramidal decomposition

- Goal: decompose into min# of pyramidal parts
- How hard is this problem for humans?

What is the best you can do?

2014: pyramidal decomposition

- Goal: decompose into min# of pyramidal parts
- How hard is this problem for humans?

2014: pyramidal decomposition

- Goal: decompose into min# of pyramidal parts
- How hard is this problem for humans?

Exact vs. approximation decomposition

- Exact pyramidal decomposition is NP-hard
 - Proved for 3D shapes and 2D polygons with holes [Fekete and Mitchell 2001]
- Exact decomposition may lead to too many parts
- New problem: approx pyramidal decomposition
 - APD: Each part is only approximately pyramidal
 - Still seeks as few parts as possible

Pyramidality measure

Pyramidality estimated along three directions u_1 , u_2 and u_3

Pyramidality of part is estimated over all directions

Pyramidality estimated along three directions u_1 , u_2 and u_3

- Pyramidality of part is estimated over all directions
- Take direction with the least (estimated) material waste relative to projected area

Convert APD into an Exact Cover Problem (ECP)

A block partition

Convert APD into an Exact Cover Problem (ECP)

A block partition

A cover consisting of a set of candidate pyramidal parts

Convert into an Exact Cover Problem (ECP)

A block partition Solutions to ECP by Algorithm X [Knuth 2000]

ECP is NP-complete.

Algorithm X efficiently enumerates all solutions to ECP.

Any objective function can be employed to pick solutions.

Convert into an Exact Cover Problem (ECP)

A block partition Solutions to ECP by Algorithm X [Knuth 2000]

How to get the set of candidate pyramidal parts?

A clustering approach

Progressively build larger & larger building blocks

 Key clustering criterion: group elements that are likely to belong to large pyramidal parts

Paper and press coverage

Back to DAP

- Better utilize the print volume, material, and time
 - Dapper: Decompose AND Pack (DAP) a 3D object
 - Especially attractive for powder-based 3D printing

[[]Chen et al. 2015]

DAP problem

• Given a 3D shape S and print volume V, decompose S into a small number of parts to be packed compactly into V

DAP problem

- Geared towards efficient 3D printing
 - support material, build time, and assembly cost
- Adjustable for powder and FDM 3D printing
- Object function combines part count with printing criteria
 DAP: Must solve D AND P, not D-and-THEN-P
 Image: Comparison of the printing of the printing

Making the problem tractable

- Restrict the geometric primitives for DAP
 - Search space too large for arbitrary primitives
 - Arbitrary primitives are also difficult to pack
- Restrict cut and packing directions
- Settling for heuristics and sub-optimality

Primitives: pyramidal parts

- Not only printing-friendly, also packing-friendly
 - No inner pockets to fill
 - Packing = matching of only one side, the "teeth" side

Primitives: pyramidal parts

- Not only printing-friendly, also packing-friendly
 - No inner pockets to fill
 - Packing = matching of only one side, the "teeth" side
- Decomposition: closure under axial cuts

Further search reduction

- Decompose into and pack only pyramidal polycubes
- Voxelize input shape and only axial cuts
 - Closure property with pyramidal primitives
- 90x degree rotations for packing

Further search reduction

- Decompose into and pack only pyramidal polycubes
- Voxelize input shape and only axial cuts
 - Closure property with pyramidal primitives
- 90x degree rotations for packing
- Problem is more fun: like playing 3D Tetris!

Algorithm overview

DAP like playing Tetris (video)

From "what" to "how" to print

 Fabrication-aware (input) design: optimize the input 3D shape for fabrication = what to print

Tool path planning

• Tool path fill = space-filling curve

Choice of tool path affects print time, inner fill
+ surface quality

Tool path planning

- Tool path fill = space-filling curve
- Most popular tool path pattern: zigzag

Tool path planning

- Tool path fill = space-filling curve
- Most popular tool path pattern: zigzag

Zigzag fill: discontinuity

Zigzag: sharp turns

Contour-parallel paths (CPP): iso-contour

- Less sharp turns
- Conform to boundary
- Contours disconnected
- Disconnected "pockets"

From CPP to conventional spirals

- Conformation to boundary
- Less sharp turns than zigzag
- Connect iso-contours by "offset"

Disconnected spirals

[Held et al. 2014]

Idea: connect the spirals?

- Can connect two spirals:
 - inside-out & outside-in
 - Then stuck: both start and end points are enclosed

Impossible to connect all

Is it always possible to fill a connected 2D region using a globally continuous path with low number of sharp turns?

Key idea: Fermat spirals!

Pierre de Fermat (1636)

Fermat spiral: compelling properties

Similarities to spiral and CPPs

- Conform to surface boundaries
- Less sharp turns than zigzag
- Continuity for simple shapes
- New: start & end on boundary
- <u>Key:</u> can place start & end points freely along boundary
- Allows connection of all Fermat spirals for global continuity

Key steps

1. Apply Euclidean distance transform to input 2D layer to obtain iso-contours and set of pockets

Key steps

- 1. Apply Euclidean distance transform to input 2D layer to obtain iso-contours and set of pockets
- 2. For each pocket, covert contour parallel paths into a Fermat spiral with start and end points next to each other

Key steps

- 1. Apply Euclidean distance transform to input 2D layer to obtain iso-contours and set of pockets
- 2. For each pocket, covert contour parallel paths into a Fermat spiral with start and end points next to each other
- 3. Connect all Fermat spirals via a traversal and local re-routing
- 4. Localized post-smoothing of final curve

New kind of space-filling curves

- Introducing Fermat spirals as a new kind of 2D fill pattern, contrasting Hilbert and Peano curves
- Tool path planning based on connected Fermat spirals (CFS) to continuously fill 2D region

Some results

Z: zigzag paths C: contour-parallel paths F: connected Fermat spiral paths

Some stats

		Number of disconnected segments		Percentage of sharp turn (high- curvature) points		
	Input	#segZ	#segC	%stZ	%stC	%stF
	dancer 1	22	14	5.87%	1.40%	1.38%
	dancer 2	19	10	6.58%	1.55%	1.08%
	dancer 3	21	13	4.11%	1.19%	0.81%
	crane	8	17	4.86%	0.46%	0.93%
	butterfly	16	24	1.81%	0.83%	0.52%
	hand	9	11	4.84%	1.07%	0.56%
Ö	gear	51	105	1.18%	2.11%	0.23%
	paw	20	55	1.25%	0.51%	0.31%
	h-slice1	53	58	4.35%	1.08%	0.81%
	h-slice2	47	56	5.12%	0.88%	0.70%
-						

Connected Fermat spirals in video

Simulated printing

Appearance on Two-Minute Papers

