Learning to Generate 3D Shapes
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Generative models

Models that describe and enable generation of intended outcomes,
e.g., images, 3D shapes, or scenes sharing some commonalities

o Procedural models, probabilistic sampling, genetic algorithms, etc.

A good model should produce diverse yet plausible results

Michadd Leyron

The interesting question is how to recover/infer/learn | "0
a generative model from a given set of outcomes

That is, to solve the inverse modeling problem




Learning to generate is at the heart of Al

When does a machine become “human’?

e Turing Test (1950): machine’s ability to make
human-like conversation (“passed” in 2014)




Learning to generate is at the heart of Al

When does a machine become “human’’?

What really separates humans from machines is not the
ability to make human-like conversation (the Turing Test),
but the ability to be creative or be original!

« Lovelace Test: test machine’s creativity
o To craft a story, painting, 3D shape, or virtual scene

o How to judge it: when the machine’s creator cannot
explain machine’s creation

[Bringsjord, Bello, and Ferrucci, 2001]




Creativity is hard
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Take a step back: from create to generate

* To just generate without requiring creative outcome
« To imitate (i.e., learn from examples) without being original

* Goals: plausibility, realism/quality, and diversity

o Much recent success on synthesizing speech/face/natural images



Remarkable progress on image generation

* Progressive GAN (Generative Adversarial Network) [Nvidia, 2016/17]

. BlgGAN [Google Deepmind, 2018/19]

400 x 267 image resolution, using class conditionals



Our focus: neural generation of 3D shapes

There are some unique challenges to training deep neural networks
(DNNs) for 3D shape generation and reconstruction ...




Challenge #1: 3D data challenge

 Acquisition of and interaction with 3D contents are hard
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o Still lack of “BIG 3D Data” to train (deep) machine
learning algorithms for many analysis and synthesis tasks




Useful ideas to address 3D data challenge

* Projective analysis: use annotated images to train 3D tasks
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Projective Analysis for 3D Shape Segmentation [Wang et al. SIG Asia 201 3]



Useful ideas to address 3D data challenge

* Projective analysis: use annotated images to train 3D tasks

* Minimizing user annotations: active learning
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Unsuperwsed or weakly supervised learning: more challenglng,
more interesting, and less data bias (learns essence of problem?)




Challenge #2: affordance and functionality

« Why would we design and generate a 3D object?

> Not just to look at it, but to use it! Not enough to just “look right”




Challenge #2: affordance and functionality

o |tis not about what it is, e.g., to have the right parts and be

recognizable by a CNN, but what it can do and can afford ...
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The ultimate goal is not appearance, but functionality!

Generated 3D shapes/scenes need to function properly
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Learning functionality is challenging

* Functionality is contextual: defined by interactions between
a 3D object and other objects, the agents, e.g., humans
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Learning functionality is challenging

* Functionality is contextual: defined by interactions between
a 3D object and other objects, the agents, e.g., humans

o |nteraction contexts harder to collect, describe, and generate
o Considerably less 3D data have functionality annotations

o How to define a “differentiable functionality loss”?



Most fundamental: representation challenge

« Unlike images or speech, there is no universally accepted
representation or encoding for 3D shapes



Challenge #3: representation challenge

« Unlike images or speech, there is no universally accepted
representation or encoding for 3D shapes

* Alternatives: low-level representations

Mesh: a set of triangles Volume: a grid of voxels Point cloud:a set of points ,



Challenge #3: representation challenge

* Higher-level representations %
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Challenge #3: representation challenge

« Parameterized representation through mapping
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Geometry images [Sinha et al. 201 6]

Multi-view images
in MVCNN [Su et al. 2015]



Recent wave of neural models for implicit reps

« Learn mapping from a 3D point (x, y, z) to inside/outside status or
signed distance function (SDF) with respect to a 3D shape
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How has 3D shape generation been done?



Traditional modeling paradigms in graphics

* Model-driven and interactive (human-in-the-loop)

* Human defines/influences the rules/procedures

22



Traditional modeling paradigms in graphics

* Model-driven and interactive (human-in-the-loop)

* Human defines/influences the rules/procedures

« Examples:
X L] € Untitled - SketchUp
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Sketch-based modeling
[Igarashi et al. SIG 1999] +Extrusion (SketchUp) Procedural modeling
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Can machines learn to generate 3D shapes?



Where does the machine learn from?

« Learn model generation from data or examples
« Shifting from model-driven to data-driven

« Two basic model generation paradigms
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Paradigm #1: “more of the same”

* Input: set of examples with commonality, e.g., all tractors

* Learn to generate more of the “same” (but with novelty)
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Key: learn a space or manlfold or distribution spanned
by the examples. Then sample or traverse the space to
generate novel 3D shapes.
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Paradigm #2: “generate from X”

* Input: sets of examples from two domains X and Y

« Learn to generate target 3D shapes in Y from inputs in X
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Key: learn a mapping or regression model




Approaches to “generate from X”

« Earlier data-driven methods: retrieve-and-adjust

[Xu et al. SIG 201 3]

Sketch-to-scene
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Approaches to “generate from X”

« 3D model generation from a single photograph

Select%

[Xu et al. SIG 201 1]
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Approaches to “generate from X”

* Model generation from single depth scan + RGB image

« 3D model built by assembling parts from different shapes

(b)

[Shen et al. SIG Asia 2012]
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Retrieve-and-adjust approaches

« Similarity-driven retrieval followed by fitting and assembly
 Program does not really learn a general mapping

« Lack of novelty: generations do not deviate too much from

database models

[Xu et al. SIG 2012]
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Deep learning based methods

 Example: learn a general-purpose, non-linear mapping
between two point sets, trained with paired data
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P2P-NET [Yin et al. SIG 2018]
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Another example: DeepSketch2Face

« Also trained with paired data: sketches and face meshes

Input AlexNet Block
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DeepSketch2Face [Han et al. SIG 2017]
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New challenge: unpaired training data

* Only available data are examples from domains X and Y
« Examples in X and Y are not matched up

* A more general setting as paired data can be unavailable
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“Shooting two birds with one stone”

« With same framework, train two mappings simultaneously

e Two translators (X—Y and Y—X): duals and form a cycle

35



“Shooting two birds with one stone”

« With same framework, train two mappings simultaneously
« Two translators (X—Y and Y—X): duals and form a cycle

 Map from X to Y and back to X: loss to be measured in
only one domain, e.g., a cycle consistency loss

Exciting new direction: unsupervised or weakly supervised
domain translation with unpaired data. Most works on
image-to-image translation and mainly style transfer.
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LOGAN: unpaired shape-shape transform

LOGAN: Unpaired Shape Transform in Latent Overcomplete Space

LOGAN [Yin et al. SIG Asia 2019]
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Style or content completely determined
by the two input domains
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Approaches to “more of the same”

« Earlier methods: mix-and-match or part (re-)composition

Set evolution
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Modeling by example “Fit and diverse”

Set evolution

Part retrieval

[Funkhouser et al. 2004] [Xu et al. SIG 2012]



“Fit and diverse” for creative modeling

« Evolves an entire set of 3D models to obtain generations

of fit and diverse new offsprings
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“Fit and diverse” for creative modeling

« Creativity: machines stochastically generate models

» Control: by humans operating on a “design gallery”
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Creative 3D modeling: evolution

 Fit = plausibility, e.g., from chairs to chair-like shapes

 Diversity = “surprising” designs to not stuck in an elite
population — the elites do not survive well

41



Creative 3D modeling: evolution

 Fit = plausibility, e.g., from chairs to chair-like shapes

 Diversity = “surprising” designs to not stuck in an elite
population — the elites do not survive well

« Executed via stochastic cross-over (part exchange)
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Mix-and-match approaches

« Similarity-driven part substitution within a shape collection

« Machine does not really learn any space/manifold
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“Fit and diverse” [Xu et al. SIG 2012]
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3D generative adversarial network (3D-GAN)

« 3D shape as voxels: combine volumetric CNN and GAN
* (Generator maps 200D latent vector to 64x64x64 volume

« Discriminator classifies real objects vs. generator outputs
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3D-GAN [Wu etal. NIPS 2016]



3D-GAN results

Generate novel shapes

3D volumetric shapes generated fro
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“More of the same”: fooling the discriminator = making
the generated outputs similar to training examples




3D-GAN

* Volumetric CNN is not structure-aware

* Results: low-res “blobs” of voxels; no clean separation of
object parts; not reusable for subsequent modeling

JIflerengoe

 Inreal life, 3D objects are not build at voxel (but part) level

* Think IKEA furniture or most current manufacture process
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Symmetry hierarchies (SYMH)  wangetaiec 2011

Symmetry hierarchy: symmetry guides grouping and assembly of shape parts
to form a meaningful hierarchical part organization.
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SYMH construction

Part segmentation

Symmetry detection
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Initial graph

— Rotational symmetry
— Reflection symmetry

— Connectivity
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Bottom-up graph contraction

Two operations:

Grouping by symmetry
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Bottom-up graph contraction

L J Two operations:

Assembly by proximity
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SYMH: a fundamental shape representation

 Structure-aware: hierarchical part organization

* Functionality-aware (just a bit): symmetric parts tend to
perform the same function

« Decouples structure and (part) geometry

Can SYMH be generative?

A good idea: with SYMH, we can decouple the learning
and generation of shape structure and part geometry
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Can neural nets (NNs) be trained to learn SYMH?

« Can we encode or “vectorize” SYMHSs for NN processing?

* Can traditional convolutional NNs work for SYMHSs?

SYMH is a structural shape representations (an
organization of parts).VWe need a different kind of NIN.
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Recursive neural network (RvNN # Recurrent NN)

 Atree structure where each node is a neural network

4 N
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An RvNN




Recursive neural network (RvNN # Recurrent NN)

 Atree structure where each node is a neural network
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An RvNN




Recursive neural network (RvNN # Recurrent NN)

 Atree structure where each node is a neural network
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nD vector nD vector nD vector nD vector

An RvNN




Learn SYMH using RvNNs

« A shape structure is represented by an arrangement of boxes

« Each box is encoded as a fix-dim vector: leaves of the SYMH

Box
arrangement

How to define the network loss!?
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RvNNSs into recursive autoencoder (RAE)

* RAE encoder turns box arrangements into a root code, recursively
* RAE decoder turns a code into a SYMH, recursively

« Network loss is the reconstruction loss summed over boxes

n-D
root code
Box O_,O QO O O i Box
arrangement | © Oi,OO O\O/g o O arrangement
RAE decoder can be refined into a generative [Li et al. SIG 2017]

model, allowing generation of new SYMHs 58




Generative Recursive Autoencoder: GRASS

« Change AE loss to GAN loss to learn a manifold of plausible codes

« Part geometry is learned by yet another neural network

« Generation: sample root code - SYMH — fills in part geometry

zs~N(u, 0)
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Key idea again: de-couple generation of shape structures
(SYMHs) and generation of shape geometries.
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3D shape generation results [Li et al. SIG 2017]

* First neural network to learn multi-attribute structural graphs

« Coarse-to-fine synthesis: structure-aware; high-res; clean parts

Results from voxel-based 3D-GAN [Wu et al. NIPS 201 6] 60
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