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• Models that describe and enable generation of intended outcomes, 
e.g., images, 3D shapes, or scenes sharing some commonalities
◦ Procedural models, probabilistic sampling, genetic algorithms, etc.

• A good model should produce diverse yet plausible results

Generative models

The interesting question is how to recover/infer/learn 
a generative model from a given set of outcomes

That is, to solve the inverse modeling problem 
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• Turing Test (1950): machine’s ability to make 
human-like conversation (“passed” in 2014)

When does a machine become “human”?

Learning to generate is at the heart of AI
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When does a machine become “human”?

Learning to generate is at the heart of AI

Ada Lovelace (1815 – 1852)

What really separates humans from machines is not the 
ability to make human-like conversation (the Turing Test), 

but the ability to be creative or be original!

• Lovelace Test: test machine’s creativity
◦ To craft a story, painting, 3D shape, or virtual scene

◦ How to judge it: when the machine’s creator cannot 
explain machine’s creation 

[Bringsjord, Bello, and Ferrucci, 2001]
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Creativity is hard
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Take a step back: from create to generate
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• To just generate without requiring creative outcome

• To imitate (i.e., learn from examples) without being original

• Goals: plausibility, realism/quality, and diversity

◦ Much recent success on synthesizing speech/face/natural images



Remarkable progress on image generation
• Progressive GAN (Generative Adversarial Network) [Nvidia, 2016/17]

• BigGAN [Google Deepmind, 2018/19]
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400 x 267 image resolution, using class conditionals



Our focus: neural generation of 3D shapes
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IM-NET: 5123 resolution, meshing by Marching Cubes
[Chen and Zhang, CVPR 2019]

DISN: single-view 3D shape reconstruction 
[Wang et al., NeurIPS 2019]

There are some unique challenges to training deep neural networks 
(DNNs) for 3D shape generation and reconstruction …



Challenge #1: 3D data challenge
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• Acquisition of and interaction with 3D contents are hard

62.5 million chair images

25K 3D chairs

Still lack of  “BIG 3D Data” to train (deep) machine 
learning algorithms for many analysis and synthesis tasks 



Useful ideas to address 3D data challenge
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• Projective analysis: use annotated images to train 3D tasks

Projective Analysis for 3D Shape Segmentation [Wang et al. SIG Asia 2013]



Useful ideas to address 3D data challenge
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• Projective analysis: use annotated images to train 3D tasks

• Minimizing user annotations: active learning 

Active Co-Analysis of a Set of Shapes [Wang et al. SIG Asia 2012]Unsupervised or weakly supervised learning: more challenging, 
more interesting, and less data bias (learns essence of problem?)



Challenge #2: affordance and functionality
• Why would we design and generate a 3D object?

◦ Not just to look at it, but to use it! Not enough to just “look right”
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Challenge #2: affordance and functionality
• Why would we design and generate a 3D object?

◦ Not just to look at it, but to use it! Not enough to just “look right”

◦ It is not about what it is, e.g., to have the right parts and be 
recognizable by a CNN, but what it can do and can afford …

≈

CNN with max pooling 13

The ultimate goal is not appearance, but functionality!
Generated 3D shapes/scenes need to function properly



Learning functionality is challenging
• Functionality is contextual: defined by interactions between 

a 3D object and other objects, the agents, e.g., humans
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Learning functionality is challenging
• Functionality is contextual: defined by interactions between 

a 3D object and other objects, the agents, e.g., humans
◦ Interaction contexts harder to collect, describe, and generate

◦ Considerably less 3D data have functionality annotations

◦ How to define a “differentiable functionality loss”?
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Most fundamental: representation challenge
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• Unlike images or speech, there is no universally accepted 
representation or encoding for 3D shapes



Challenge #3: representation challenge
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• Unlike images or speech, there is no universally accepted 
representation or encoding for 3D shapes

• Alternatives: low-level representations

Mesh: a set of triangles Volume: a grid of voxels Point cloud: a set of points



Challenge #3: representation challenge
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• Higher-level representations

Structural: a set of parts

Hierarchical 
organization of parts

Procedural: e.g., CSG rep



Challenge #3: representation challenge
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• Parameterized representation through mapping

Geometry images [Sinha et al. 2016]
Multi-view images

in MVCNN [Su et al. 2015]



Recent wave of neural models for implicit reps
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• Learn mapping from a 3D point (x, y, z) to inside/outside status or 
signed distance function (SDF) with respect to a 3D shape 

The implicit field decoder learns shape boundaries

Shape encoding Inside/outside



How has 3D shape generation been done?



Traditional modeling paradigms in graphics

22

• Model-driven and interactive (human-in-the-loop)

• Human defines/influences the rules/procedures



Traditional modeling paradigms in graphics
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• Model-driven and interactive (human-in-the-loop)

• Human defines/influences the rules/procedures

• Examples:

Sketch-based modeling 
[Igarashi et al. SIG 1999] Procedural modeling+Extrusion (SketchUp)



Can machines learn to generate 3D shapes? 



Where does the machine learn from?
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• Learn model generation from data or examples

• Shifting from model-driven to data-driven

• Two basic model generation paradigms



Paradigm #1: “more of the same”
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• Input: set of examples with commonality, e.g., all tractors

• Learn to generate more of the “same” (but with novelty)

Probabilistic synthesis [Kalogerakis et al. SIG 2012]

Key: learn a space or manifold or distribution spanned 
by the examples. Then sample or traverse the space to 

generate novel 3D shapes.



P2P-NET [Yin et al. SIG 2018]

Paradigm #2: “generate from X”
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• Input: sets of examples from two domains X and Y

• Learn to generate target 3D shapes in Y from inputs in X

Key: learn a mapping or regression model



Approaches to “generate from X”
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• Earlier data-driven methods: retrieve-and-adjust

[Xu et al. SIG 2013]
Sketch-to-scene



Approaches to “generate from X”
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• 3D model generation from a single photograph

Select Warp

[Xu et al. SIG 2011]



Approaches to “generate from X”
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• Model generation from single depth scan + RGB image

• 3D model built by assembling parts from different shapes

[Shen et al. SIG Asia 2012]



Retrieve-and-adjust approaches
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• Similarity-driven retrieval followed by fitting and assembly

• Program does not really learn a general mapping

• Lack of novelty: generations do not deviate too much from 
database models 

[Xu et al. SIG 2012]



Deep learning based methods
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• Example: learn a general-purpose, non-linear mapping 
between two point sets, trained with paired data

P2P-NET [Yin et al. SIG 2018]



Another example: DeepSketch2Face
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• Also trained with paired data: sketches and face meshes

DeepSketch2Face [Han et al. SIG 2017]
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• Only available data are examples from domains X and Y

• Examples in X and Y are not matched up

• A more general setting as paired data can be unavailable

???

CycleGAN [Zhu et al. ICCV 2017]

New challenge: unpaired training data



“Shooting two birds with one stone”

35

• With same framework, train two mappings simultaneously

• Two translators (X→Y and Y→X): duals and form a cycle



“Shooting two birds with one stone”
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• With same framework, train two mappings simultaneously

• Two translators (X→Y and Y→X): duals and form a cycle

• Map from X to Y and back to X: loss to be measured in 
only one domain, e.g., a cycle consistency loss

CycleGAN   Jun-Yan Zhu, Taesung Park, Philip Isola, and Alexei A. Efros, “Unpaired Image-to-Image 
Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017.

DualGAN   Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong, “DualGAN: Unsupervised Dual Learning for 
Image-to-Image Translation”, ICCV 2017.

Exciting new direction: unsupervised or weakly supervised 
domain translation with unpaired data. Most works on 
image-to-image translation and mainly style transfer.



LOGAN: unpaired shape-shape transform
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Style or content completely determined 

by the two input domainsLOGAN [Yin et al. SIG Asia 2019]



Approaches to “more of the same”
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• Earlier methods: mix-and-match or part (re-)composition

Modeling by example 
[Funkhouser et al. 2004]

Part retrieval

“Fit and diverse”
[Xu et al. SIG 2012]

Set evolution

Set evolution



“Fit and diverse” for creative modeling
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• Evolves an entire set of 3D models to obtain generations 
of fit and diverse new offsprings



“Fit and diverse” for creative modeling
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• Creativity: machines stochastically generate models

• Control: by humans operating on a “design gallery”



Creative 3D modeling: evolution
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• Fit = plausibility, e.g., from chairs to chair-like shapes

• Diversity = “surprising” designs to not stuck in an elite 
population — the elites do not survive well



Creative 3D modeling: evolution
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• Fit = plausibility, e.g., from chairs to chair-like shapes

• Diversity = “surprising” designs to not stuck in an elite 
population — the elites do not survive well

• Executed via stochastic cross-over (part exchange)



Mix-and-match approaches

43

• Similarity-driven part substitution within a shape collection

• Machine does not really learn any space/manifold

“Fit and diverse” [Xu et al. SIG 2012]



3D generative adversarial network (3D-GAN)
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• 3D shape as voxels: combine volumetric CNN and GAN

• Generator maps 200D latent vector to 64x64x64 volume

• Discriminator classifies real objects vs. generator outputs 

3D-GAN [Wu et al. NIPS 2016]



3D-GAN results
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3D volumetric shapes generated from random latent vectors      Closest examples

Generate novel shapes

“More of the same”: fooling the discriminator = making 
the generated outputs similar to training examples



3D-GAN
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• Volumetric CNN is not structure-aware

• Results: low-res “blobs” of voxels; no clean separation of 
object parts; not reusable for subsequent modeling

• In real life, 3D objects are not build at voxel (but part) level
• Think IKEA furniture or most current manufacture process



Symmetry hierarchy: symmetry guides grouping and assembly of shape parts 
to form a meaningful hierarchical part organization. 

Symmetry hierarchies (SYMH)
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[Wang et al. EG 2011]



Part segmentation Symmetry detection

SYMH construction
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Rotational symmetry
Reflection symmetry
Connectivity

Initial graph
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Grouping by symmetry

Two operations:

Bottom-up graph contraction
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Two operations:

Assembly by proximity

Grouping by symmetry

Bottom-up graph contraction
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SYMH: a fundamental shape representation
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• Structure-aware: hierarchical part organization

• Functionality-aware (just a bit): symmetric parts tend to 
perform the same function

• Decouples structure and (part) geometry

• Tree organization reveals part structures

• Leaf nodes reveal part geometry

Can SYMH be generative?

A good idea: with SYMH, we can decouple the learning 
and generation of shape structure and part geometry



• Can we encode or “vectorize” SYMHs for NN processing?

• Can traditional convolutional NNs work for SYMHs?

Can neural nets (NNs) be trained to learn SYMH?
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SYMH is a structural shape representations (an 
organization of parts). We need a different kind of NN.



• A tree structure where each node is a neural network

Recursive neural network (RvNN ≠ Recurrent NN)
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NN

An RvNN

nD vector

nD vector nD vector



• A tree structure where each node is a neural network
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NN

An RvNN

nD vector

nD vector nD vector

nD vector

nD vector nD vector

NN

Recursive neural network (RvNN ≠ Recurrent NN)



• A tree structure where each node is a neural network
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NN

An RvNN

nD vector

nD vector nD vector

nD vector

nD vector nD vector

NN

NN

Recursive neural network (RvNN ≠ Recurrent NN)
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Box 
arrangement

• A shape structure is represented by an arrangement of boxes

• Each box is encoded as a fix-dim vector: leaves of the SYMH

How to define the network loss?

Learn SYMH using RvNNs



Box 
arrangement

Box 
arrangement
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[Li et al. SIG 2017]

• RAE encoder turns box arrangements into a root code, recursively

• RAE decoder turns a code into a SYMH, recursively

• Network loss is the reconstruction loss summed over boxes

RvNNs into recursive autoencoder (RAE)

RAE decoder can be refined into a generative 
model, allowing generation of new SYMHs



Generative Recursive Autoencoder: GRASS
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• Change AE loss to GAN loss to learn a manifold of plausible codes

• Part geometry is learned by yet another neural network

• Generation: sample root code → SYMH →  fills in part geometry

Key idea again: de-couple generation of shape structures 
(SYMHs) and generation of shape geometries. 



3D shape generation results
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• First neural network to learn multi-attribute structural graphs

• Coarse-to-fine synthesis: structure-aware; high-res; clean parts

[Li et al. SIG 2017]

Results from voxel-based 3D-GAN [Wu et al. NIPS 2016]
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