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Shape perception through abstraction

n Mesh objects may contain much redundancy

n Do I need >10K triangles to represent a cylinder?

n Humans can often perceive a shape by just an abstraction

n E.g., a few sketches or a high-level structural understanding
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Feature analysis & segmentation

n How to capture the essence (a high-level abstraction) of a shape?

n The essence of a shape can be captured either by

n Feature curves – crease lines, silhouette, etc. – feature extraction

n Or its constituent parts –                                                                   
humans perceive shape by                                                               
decomposing it into meaningful                                                                        
parts [Hoffman & Richards 84] –                                                                
mesh segmentation



Various feature lines

n Silhouettes/outlines/contours: view-dependent

n Edges; crest lines; ridges and valleys: view-independent

n What are visually more “important” or “apparent”?
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Visible points whose normals are 
perpendicular to the view vectors



Various feature lines (aside)

n Silhouettes/outlines/contours: view-dependent

n Edges; crest lines; ridges and valleys: view-independent

n What are visually more “important” or “apparent”?
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https://gfx.cs.princeton.edu/pubs/DeCarlo_2003_SCF/DeCarlo2003.pdf



n Silhouettes/outlines/contours: view-dependent

n Edges; crest lines; ridges and valleys: view-independent

n What are visually more “important” or “apparent”?
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https://people.csail.mit.edu/tjudd/apparentridges.html

Various feature lines (aside)
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Technical definition of edges

n Geometric features are mostly of two types:

n Point features, e.g., spikes, corner, extremities

n Line-type features, e.g., edges, ridge, valley, or                                   
crest lines – most common

n How to define line-type features?

n From image processing, edges are composed of                                  
pixels where the magnitude of the gradient of the                                 
image intensities has a local maximum in the                               
direction of the gradient

    where gradient captures direction of fastest ascent
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Edges on 3D surface

n Intensity changes Û variation of normals

n Variation of normals Û curvatures

n Positive curvature Þ ridge (blue); negative Þ valley

n Feature edge: loci of points attaining local extrema                         of 
principal curvatures along lines of curvature

n Lines of curvature depict direction of principle curvatures

n Edges as part boundaries for segmentation



Edge detection in point clouds

n Not just “detection” since edge points may not have been sampled
n Edge-Aware Resampling (EAR), e.g., upsampling on/near edges

n Would facilitate surface reconstruction with shape features

10/29/249



What is an edge: model- vs. data-driven

n Model-based edge definition may not work robustly on real data

n “Soft” edges and non-uniform data, especially over point clouds

n Local extrema may lead to too many edge points, e.g., thick edges

n Noise, sparsity, and missing data

n It is possible to “learn” edge extraction for point clouds 

10

[Wang et al. NeurIPS 2020]



Dataset: A Big CAD dataset

n 1 millions CAD models in various formats and parametric edges!
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Comparisons
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Segmentation

n An integral part of a computer vision system

n Plays a critical role in 3D object recognition

“… for the task of visual recognition, the visual system decomposes 
shapes into parts, …”

Preprocessing, 
e.g., smoothing

Feature, e.g., 
edge, extraction

Segmentation 
(to components)

Classification 
and description

Input 
image

“The scene has 
a horse and a 
rider in a field.”

— [Hoffman & Richards] in Cognition, 1984



What is a part: geometry vs. semantics

n Geometric criteria
n Convexity

n Cylindrical

n Pyramidal, etc.

n Semantics (related to meaning): a meaningful part
n Appeals to human intuition or knowledge

n Often no general math formulation — knowledge-driven
n Semantics may lead to geometric criteria: e.g., minima rule
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n Partition a shape into meaningful components
n Minimal rule from study of visual perception

15

Minima rule: cut boundary at negative minima of 
curvature, i.e., over concavity (a local criterion)

Segmentation by minima rule
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Use of the minima rule

5 parts 16 parts
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More meaningful …

“An understanding of semantics”
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Symmetry

A non-local criterion: a segment is self-symmetric!
Yet, symmetry is still a geometric criterion!

5 parts 5 parts



n Model-driven: model “hand-crafted” from knowledge/exp
n Convexity

n Minima rule

n Pyramidal: application-driven

n Symmetry

n Data-driven: learn from data, e.g., human segmentation
n Supervised vs. un-supervised vs. semi-supervised learning

n Recent developments in deep-learning-based methods
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What is a part: model- vs. data-driven
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From parts (segmentation) to structure

“We propose that, for the task of object recognition, the 
visual system decomposes shapes into parts, that it 

does so using a rule defining part boundaries rather than 
part shapes (minimal rule), … , and that parts with 

their descriptions and spatial relations provide a first 
index into a memory of shapes. 

From “Parts of Recognition” by Hoffman and Richards, Cognition, 1984



n Structure = part structure = part composition and 
relations between the constituent parts of a shape

n Part composition = how a shape is segmented
n Part relations:

n Symmetry or repetitions

n Proximity

n Angle between parts

n Relative positioning, e.g., co-planarity
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From parts (segmentation) to structures



n Cuboids and generalized cylinders enclose parts

n Analyze shape to detect symmetry, proximity, angle, …

n Edits preserve structural relations among controllers, 

mainly symmetry and proximity

Structure-aware editing

[Zheng et al. 2010]



n Wires as control/editing handles [Singh & Fiume 1999]

n Analyze shape first, to detect symmetry, co-planarity

n Edits preserve structural relations among wires
https://www.youtube.com/watch?v=se1fz2RRdKY  [Gal et al. 2009]

Structure-aware editing: iWires

Survey: Structure-Aware Shape Processing
http://www.cs.sfu.ca/~haoz/pubs/mitra_star13.pdf

https://www.youtube.com/watch?v=se1fz2RRdKY
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Many applications for segmentation

n Define a shape descriptor for recognition, classification, retrieval, …

n Structure-aware shape processing; structure = part composition

n First step towards higher-level understanding, e.g., functionality

n Extraction of skeletal representation for animation [Katz & Tal 03]
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n Partition a mesh into disk-like patches obeying certain geometric 
properties, e.g., planarity, size, or convexity

n Applications: 
n Texture mapping

n Mesh decimation, 

n Mesh compression, 

n Remeshing, 

n Fast collision detection

n etc.

Patch-type segmentation
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Our focus: part-type segmentation

n Partition shape into meaningful parts

n Applications
n Object recognition

n Morphing

n Skeletal animation

n Shape correspondence

n Main challenges

n No universal or mathematical definition for a “part”

n Autonomy of algorithms



27

Classification of approaches (aside)

n Skeleton-based [Li et al. 01]

n Plane sweep with respect to a curve skeleton of input shape

n Keep track of the planar 2D cut profiles along the skeleton

n A part = swept volume between “critical points” of profile function
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Classification of approaches

n Surface-based: most common

n Boundary-based : cut shape into parts

– feature (edge) extraction followed by cut formation

n Region growing, e.g., watershed

n Clustering: k-means, fuzzy clustering, spectral clustering

n Volume-based: similar but work with voxels

n Template matching: based on prior models of partsWithin each class, skeleton-, surface-, or volume-based, 
there can be model- or data-driven approaches
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Boundary-based & model-driven

n Mesh scissoring, basic steps:

1. Feature edge extraction from a dense mesh

2. Feature selection — rely on user intervention for feature rejection

3. Contour completion to form closed cuts

4. Post processing of contours to better adapt to real features

[Lee et al. 04]

reject
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Region-growing: watershed (aside)

Think about water flowing down to bottom of basins

1. Assign a weight, e.g., curvature, to each vertex

2. Threshold weights to identify local minima or minima plateau

3. Flow each unlinked vertex v : link v to neighbor with smallest weight

4. Continue until reaching a local minima or minima plateau

5. All vertices that can flow to such a minima or minima plateau belong to 
the same segment

6. Flow is from cut boundary (dividing water basins) to region centers
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Watershed: pros and cons (aside)

n Pro: no need to specify how many segments — fairly automated

n Pro: pretty fast algorithms, e.g., using fast marching

n Con: prone to over-segmentation, so need to post merging

n Con: boundaries may not be smooth
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n k-means clustering in spatial domain [Shlafman et al. 02]

n Fuzzy k-means clustering [Katz & Tal 03]

n k-means clustering in the spectral domain [Liu & Zhang 04]

n Other clustering methods are possible; there are many alternatives! 

Clustering-based approaches
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Clustering problem

n Given a set of data points, group them into clusters of similar points

n An extremely important problem in machine learning and Big Data

n Pattern classification, e.g., grouping of geometric shapes, protein 
structures, faces, gestures, customers, etc.

n Vector quantization for compact representations

n Also a challenging problem: what is a cluster?

“… Classification, in its widest sense, is necessary for the development of 
language which consists of words which help us recognize and discuss the 
different types of events, objects, and people we encounter.”

— Everitt, Landau, and Leese, Cluster Analysis, 4th edition, 2001
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Important issues

n Measurement of proximity/affinity/similarity between data is KEY!

n How to mix binary data, category data, with numerical data

n Continuous data with variables of different types and scales

n Missing data values

n How to determine number of clusters?

n Try many of them and see what gets the best result

n How to evaluate quality of clustering results

n Various measures: Fisher’s criterion, silhouette coefficients, etc.
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n Perhaps the most well-known, also known as Lloyd or Lloyd-Max algorithm

n Given a set of data points, compute K clusters Sj that minimize the total 
squared distances from the points to their respective cluster centers µj 

n An unsupervised learning technique and NP-hard

n Algorithm: iteratively assigns data to its closest cluster center and then re-
compute the cluster centers, starting with random centers (vs. k-medoids)

n Bad start can lead to (numerous) bad local minima
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K-means clustering



k-means illustrated: k = 3
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Random cluster centers/centroids
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Assign points to cluster centers (Voronoi)
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Re-compute cluster centroids
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Re-computer Voronoi diagrams
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Re-assign points to cluster centers
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Iterate
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Iterate
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Iterate
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Iterate
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Converging

47
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k-means for mesh segmentation

n Compute pair-wise distances between mesh faces — Q(n2logn)

n Distances have both geodesic and angle components
n Place more emphasis on concave angle distances due to minima rule

n So faces separated by concave regions are less likely to be clustered

A
B

D
C

d(A, B) < d(C, D)
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k-means for mesh segmentation

n Compute pair-wise distances between mesh faces — Q(n2logn)

n Distances have both geodesic and angle components
n Place more emphasis on concave angle distances due to minima rule

n So faces separated by concave regions are less likely to be clustered

n All k-means approaches face:
n Local minima

n How to choose k – not easy

n Chaining over featureless regions

n Jaggie boundaries – no boundary optimization
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Improvements over classical k-means

n Fuzzy k-means [Katz & Tal 03]

n Identify fuzzy region containing faces whose membership is uncertain

n Explicit graph min-cut over fuzzy region

n Iterative and expensive —  Q(n2logn)

n Spectral k-means [Liu & Zhang 04]

n Clustering is more pronounced in spectral domain

n No need for graph min-cut

n Improved boundary

n Transform mesh elements vis spectral embedding
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n Use eigen-decomposition of graph adjacency (or Laplacian) matrix

n Generalize adjacencies to encode pair-wise distances or affinities

n Affinities encode pair relations between mesh elements

n Spectral k-d embedding from k leading eigenvectors

n Use of Laplacian matrix L = D – A is also possible

n Example: 
n k-means clustering in the spectral domain

n Distance is Euclidean and using a Gaussian

Spectral embedding (aside)



Spectral clustering (aside)

Operator A

Encode information about 
pair-wise point affinities

…

Leading 
eigenvectors

Input data

Spectral embedding
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Spectral clustering (aside)

…

eigenvectors In spectral domain Perform any clustering 
(e.g., k-means) in 
spectral domainKey app in computer graphics: shape segmentation, 

also in surface reconstruction, etc.
A lot of coverage from Machine Learning literature
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Data-driven mesh segmentation

n Supervised learning [Kalogerakis et al. 09]

n Turn segmentation into a labeling problem

n Learn from human labeling of meshes

n 380 human labeled meshes over 19 categories

Head
Torso
Upper arm
Lower arm
Hand
Upper leg
Lower leg
Foot
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Data-driven mesh segmentation

n Supervised learning [Kalogerakis et al. 09]

n Turn segmentation into a labeling problem

n Learn from human labeling of meshes

n 380 human labeled meshes over 19 categories

n Unsupervised learning [Sidi et al. 11]

n Co-analysis: analyzing a set together

n Weak knowledge utilized

n Resulting in a co-segmentation over set

n Semi-supervised learning [Wang et al. 12]
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Input Mesh Labeled Mesh

Training  Meshes

Head
Neck
Torso
Leg
Tail
Ear

Learning mesh segmentation (2009)



Labeling problem

n Each face is encoded with a (unary) feature vector (curvature, etc.)
n Edge feature encodes label compatibility, geodesic/angle distance
n Face labeling solved by a classifier based on training data 
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C = { head, neck, torso, leg, tail, ear } 

c1

Head
Neck
Torso
Leg
Tail
Ear

c2

c4

c3

1 2 3, , Îc c c C



Modern-day segmentation using NNs
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Hierarchical Feature transform Feature propagation back to original points



Unsupervised co-segmentation (aside)

59 [Sidi et al. 11]



From one, two, to a set (aside)

n Classical segmentation: one shape

n Correspondence: a pair of shapes

60 [Sidi et al. 11]



From one, two, to a set (aside)

n Classical segmentation: one shape

n Correspondence: a pair of shapes

n Can we gain by having a set?

n A set should contain more information

n Training set is useful, but expensive to obtain

n Final result is a segmentation over the entire set: co-segmentation

61 [Sidi et al. 11]



Unsupervised (weakly) learning (aside)

n No training data to define prior knowledge

n Everything is learned from the input set

n Weak knowledge: input set belongs to the same family, e.g., all 
cars, chairs, or vases, ... 

n Key criterion is the consistency of the segmentation over whole set

62 [Sidi et al. 11]



Power of a set (aside)

n Two dissimilar parts maybe clustered 

via “third parties” in the set 

n The set provides necessary linkage 

63 [Sidi et al. 11]



How it works … (aside)

n Start by identifying candidate shape segments in each shape

n Candidates segments obtained by any reasonable existing algorithm

n Key is to obtain a consistent segmentation across the set!

n Map each candidate segment into a feature space

n Perform clustering analysis …

64 [Sidi et al. 11]



How it works … (aside)

Candidate shape segments mapped to 
some feature space

Fe
at

ur
e 

sp
ac

e

Two different kinds of segments 
are closer to each other than to 
their respective matches

65 [Sidi et al. 11]



After a “spectral transform” (aside)
Fe

at
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e 
sp
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e

Two handles 
pulled closer

66 [Sidi et al. 11]



Connection made by “3rd parties” (aside)
Fe

at
ur

e 
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ac
e

Third parties
Two handles 
pulled closer

67 [Sidi et al. 11]



Deep learning co-segmentation (aside)

68 [Zhu et al. 22]



Semi-supervised: active learning
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n Human-in-the-loop machine learning

n Key is to minimize human-labeling efforts: a trade-off

[Wang et al. 12]



Semi-supervised: active learning
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n Human-in-the-loop machine learning

n Key is to minimize human-labeling efforts: a trade-off

[Wang et al. 12]

Initial segmentation: supervised or unsupervised



Semi-supervised: active learning
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n Human-in-the-loop machine learning

n Key is to minimize human-labeling efforts: a trade-off

[Wang et al. 12]

Human labeling: cannot links plus must links



Semi-supervised: active learning
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n Human-in-the-loop machine learning

n Key is to minimize human-labeling efforts: a trade-off

[Wang et al. 12]

Segment again based on new constrains and repeat



Zero-shot with LFMs (aside)

73 [Kirillov et al. 23]


