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Start with Marching Cubes

* Issue #1: unable to recover sharp features




Start with Marching Cubes

 Issue #2: model-driven — need assumption on unknowns

Recall: asymptotic decider uses bilinear interpolation



Natural assumption in 3D: trilinearity

* Results of using trilinear interpolants

(c) Trilinear interpolant

(@) Marching Cubes 33




Marching Cubes 33 [Chernyaev 1995]

 Enumerated all topological cases based on trlllnearlty

(a) The cube tessellations of Marching Cubes 33 e
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Neural Marching Cubes (NMC)

« Data-driven: learn tessellations from training data

Neural Marching Cubes

ZHIQIN CHEN, Simon Fraser University, Canada
HAO ZHANG, Simon Fraser University, Canada

(c) Trilinear interpolant

(d) NMC (ours)

(e) NMC-lite (ours simplified)

(f) Ground truth
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MC vs. NMC cases in 2D

(a) The face tessellations of Marchlng Cubes

:Ah-/\ PN
[N M/M\ //

L




MC vs. NMC cases in 2D

(b) Our face tessellations
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Associating face and corner vertices

(b) Our face tessellations
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Fixed-length vectors to store tessellations

(c) Our representation to store each square

v
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v:O

Via V5
V«'; ° .Vu'
Ve® *Vi

v.O Qv,

..
V
Four edge vertices

Four face vertices with
association to corners



Fixed-length vectors to store tessellations

(c) Our representation to store each square
Boolean part (5d)
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Fixed-length vectors to store tessellations

(c) Our representation to store each square

Vi O o V,
Vie oV

Vm ® .V(
V' o 0\/’3

ViO——a—OVs

Boolean part (5d)
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The signs o?corner 1

vertices V,~V,

Float part (12d)
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The coordinatgs of Tedge
vertices V' ~V* ¥

Indicating whether positive
or negative vertices connect,
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in the case of
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The coordinates of face
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vertices Vi~V

Edge vertex has one
DOF = one float
Face vertex has two
DOFs = two floats



3D case to parameterize a cube tessellation
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(c) Our representation to store each cube



Cube tessellation cases
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Neural network to predict tessellations

« A 3D CNN is trained to predict topological cases and
vertex positions for all cubes

« Use a 73 receptive field to provide local contexts

3D Residual Network or ResNet
(@ 3D CNN formed by residual
blocks that learn residual :>

N x M x K field N x M x K x5 Booleans

values at grids

N xMx K x5I Floats



Training set: ABC

- A Big Cad dataset: consisting of CAD models




Qualitative results and comparison
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(a) Marching Cubes 33 (b) [Lopes and Brodlie 2003] (c) NMC-lite (d) NMC (e) Ground truth
Fig. 9. Results of reconstructing 3D meshes fror( SDF griéinputs at 643 resolution. The shapes in the first two rows are from the ABC test set, and the last
two rows from Thingi10K. More results and their essellations can be found in the supplementary material.



NMC-Lite with simpler tessellations

(b) The cube tessellations of [Lopes and Brodlie 2003], with our extended topological cases (indicated with a *)
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Fig. 4. The 3D cube tessellations of Marching Cubes 33 [Chernyaev 1995] and [Lopes and Brodlie 2003]. Note that they both present 31 cases, since Case
12.3 is equivalent to Case 12.2 and Case 14 is equivalent to Case 11, with respect to rotational and mirroring symmetries. In (b), we also add our extended
topological cases to [Lopes and Brodlie 2003], indicated with a *, to form a simplified version of our NMC tessellations, denoted as NMC-lite.

Different tessellation designs require different Ground Truth (GT) data
preparation to supervise the 3D CNN training



Qualitative results and comparison
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(a) Marching Cubes 33 (b) [Lopes and Brodliee003 c) NMC-lite (d) NMC (e) Ground truth
Fig. 12. Results of reconstructing 3D meshes from\pinary voxel/occupanc inputs at 643 resolution. The shapes in the first two rows are from the ABC test set,
and the last two rows from Thingi10K. More results = lations can be found in the supplementary material.



Youtube video on NMC presentation

https://youtu.be/O7NFYN3YzDM?si=a55)VztKUcax]ixw
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Pros and cons of NMC

& Generalizes well to broad range of shapes: local receptive fields

< Data-driven and excels at recovering sharp features

21



Pros and cons of NMC

©
©

& Tessellation templates more complex than those of MC/MC33
& Qutput 4-8x more triangles

& Incurs 100x computation time to reconstruct a mesh

22



Follow-up: neural dual contouring (NDC)

4

L)

L)

» First, classical dual contouring (DC)

(? ® ®

Inputs: vertex signs,
intersection points
and normals

[Chen et al. SIGGRAPH 2022]



Classical dual contouring: require normals

*» First, classical dual contouring (DC)
(? ® ® (? ® @

o
O
© = @ © = O
O

P‘ Mesh tessellation
© ~® @ e l @ @
Inputs: vertex signs,  Interior vertices ® ® @
intersection points  solved via quadratic "t~—g |

and normals error minimization 7
g N

[Chen et al. SIGGRAPH 2022]
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Neural dual contouring (NDC): no normals

*» NDC: train CNNs to directly predict vertex signs and positions
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Unsigned neural dual contouring (UNDC)

* Unsigned NDC: directly predict edge flags and vertex positions

x} x]
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® ® ® \ Both edge intersection

TTe— flags and interior vertex
positions are predicted
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Neural dual contouring (NDC)

Neural Dual Contouring

\J
% Can take on
ZHIQIN CHEN, Simon Fraser University, Canada

va ri ous i N p utS ANDREA TAGLIASACCHI, Google Research, University of Toronto, Canada
THOMAS FUNKHOUSER, Google Research, USA
HAO ZHANG, Simon Fraser University, Canada

Noisy point cloud

Grid of Point cloud
from raw scan

unsigned distances without normals

Grid of Grid of
signed distances binary voxels




NMC NDC
Output 5 (bool)+51 (float) per cube 1 (bool)+3 (float) per cube
Network 3D ResNet 6-layer 3D CNN
Tessellation Ma.nually designed, < 1 vertex per cell.; < 1 quad
37 unique cases per cube per edge; see Figure 3
Output vertex count ~ 8X MC ~ MC
Output triangle count ~ 8xX MC ~ MC
Sample dense point cloud Sample only vertex
in each cube; minimize signs, intersection points
Data preparation chamfer distance via back and normals; then apply
propagation; complex Dual Contouring; Fast

and time-consuming and easy to compute.



NMC NDC
Need to consider all Could be a nice
Implementation cube tessellation cases; undergraduate
difficult to implement assignment
Need a complex No regularization
Regularization regularization term term needed
for voxel input
e (On ABC training set) (Same setting)
Trainging time 4 days per network < 12 hours per network
(64> SDF input) (Same setting)
Inference speed > 1 second per shape 30+ shapes per second
Self-intersections, thin Non-manifold

Inherent issues

triangles with small angles

edges and vertices

29



UNDC results with open surfaces

UNDC

Ground
truth

'VVaEI
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Comparing predicted tessellations

(d) NDC & (e) UNDC (f) Ground truth
Fig. 9. Mesh reconstruction results from SDF grid inputs at 128> resolution
on the FAUST dataset; see insets to compare triangle quality.
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Comparison on SDF inputs
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Comparison on binary voxel inputs




Comparison on unoriented point clouds

(a) Ball—pivoting (e) ConvONet 3plane

(f) ConvONet grid

W(@“ 2/ /v*»«w b

(® UNDC

(c) SIREN
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(h) Ground truth
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https://www.youtube.com/watch?app=desktop&v=uQV9GqeKaQg

Authors

Zhigin Chen Andires Tagliasacchi Thomas Funkhouser Hao (Richard) Zhang

Simon Freser Linivecsity Google Resesch S00gNe Resamch Sirmon Fraser Universily

Simon Fraser Univeraity
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Overview of neural surface reconstruction

* Perhaps the most popular problem in geometric DL

Learning Implicit Fields for Generative Shape Modeling
Zhigin Chen, Hao Zhang

Occupancy Networks: Learning 3D Reconstruction in Function Space

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, Andreas Geiger

NeuS: Learning Neural Implicit Surfaces
by Volume Rendering for Multi-view Reconstruction

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, Steven Lovegrove

Peng Wang', Lingjie Liu’*, Yuan Liu', Christian Theobalt’, Taku Komura', Wenping Wang®*

IThe University of Hong Kong Max Planck Institute for Informatics
“Texas A&M University
'{pwang3,yliu,taku}@cs.hku.hk f{1liu,theobalt}@mpi-inf.mpg.de
°wenping@tamu.edu

Three CVPR 2019 papers with a combined citation counts of 8,300+

NeurlPS 2021 paper with 1,400+ citations
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Overview of neural surface reconstruction

« Most produce a neural field, e.g., SDF, NeRF (for NVS)
NMC and NDC are exceptions

« Many inputs: point clouds (early) and images (recent)

37



Typical approach

Input: point
cloud, image(s),
even text

An Encoder :> Some latent

representation or code

.

First critical question:
What features do we encode from the inputs?
Global, local, local+global?
Early works: local image/point cloud features,
using ResNet,VGG, PointNet, etc.

38



Typical approach

Input: point
cloud, image(s),
even text

Next critical question:
What is this “representation?”

ﬁ Some latent

representation or code

f%

39



Typical approach

IInpdu'F: point i Some latent
cloud, lmage(S), representation or code
even text IL

Turn your representation into SDF
(or it is already SDF) with loss
against GT SDF values (i.e., IM-SVR)




Typical approach

Input: point
cloud, image(s), ‘
even text

Turn your representation into images
with losses against input images

N

"4

Some latent
representation or code

!

41



Examples: start from IM-Net

2048
. ] 1024
Encoder desig — 510
| 256

131 128

1
— | |— > > >|:|--—>|:|

o
1
1
1
1

Concatenate
——>» Copy and Concate
— — — — —> FC, Leaky RelLU
--—> FC, Sigmoid

IM-Net [Chen and Zhang, CVPR 2019] ,,



IM-SVR (single-view reconstruction)

2048
. — 1024
Encoder desig — 512
| 256

131 128

1
— | |— > > >|:|--—>|:|
[ U L
3

Concatenate

+» Global features: ResNet —> Copy and Concate
—> FC, Leaky RelLU
--—> FC, Sigmoid

IM-Net [Chen and Zhang, CVPR 2019] ,



IM-SVR (single-view reconstruction)

Decoder desig
2048
. 1024

—/
— 512
| ] 256

128 13 128

> Concaénate

—>» Cop#f and Concate
\'\ — — — — C, Leaky ReLU

+» IM-decoder into in/outside S FC, Sigmoid

% Marching Cubes to mesh IM-Net [Chen and Zhang, CVPR 2019] .,



An evolution of neural implicit (2019 - now)

2048
. — 1024
Encoder desig — 512
| 256

131 128

1
— —_— > > > -- —>D
3
Concatenate

+»» Global (201 9) to local —> Copy and Concate
—> FC, Leaky RelLU
--—> FC, Sigmoid

IM-Net [Chen and Zhang, CVPR 2019]



An evolution of neural implicit (2019 - now)

2048
. ] 1024
Encoder desig — .
| 256

131 128

1
— | |— > > >|:|--—>|:|

| _ B I N R
3
Concatenate
——>» Copy and Concate
—> FC, Leaky RelLU
* What role does the query -~ FC, Sigmoid

point (coordinate) play?
IM-Net [Chen and Zhang, CVPR 2019] ,



An evolution of neural implicit (2019 - now)

Decoder desig
2048
. 1024

—/
— 512
| ] 256

128 13 128

Concafnate
—>» Cop# and Concate
C, Leaky RelLU
—> FC, Sigmoid

IM-Net [Chen and Zhang, CVPR 2019] ,



An evolution of neural implicit (2019 - now)

2048
— 1024 Structured models

—/
— 512
L — 256

128 13 128

% Semantic parts

VS. primitives?

% What primitives?

Concafnate
—>» Cop# and Concate
C, Leaky RelLU
—> FC, Sigmoid

IM-Net [Chen and Zhang, CVPR 2019] ,



Encoder design

/

Global + local
feature encoding

< D2IM-Net — 2022, ...

PIFu - 2019

Deep implicit surface
network (DISN) — 2020
Deep local shape - 2020
Local implicit grid
representations - 2020
Local deep implicit
functions (LDIF) — 2020
PatchNets — 2020

IM-Net, OCC-Net, DeepSDF,
CVPR 2019

49



Learning to recover shape/surface details

“ Encode both global and local features for single-view reconstruction
*» Generally, only global encoding leads to coarse/blurry shapes

50



D2IM-Net: Learning Detail Disentangled Implicit Fields from Single Images [Li and Zhang CVPR 2021]

Encoding

Input image

Decoding Fusion

Input point p GT camera ¢

Loss

» Base loss

|
|

- { Decy | (
(@)

o ’
Global |‘ ®
)

feature 7
Coarse shape
(SDF

\

SDF loss S
: | -
( Ligplcin s} 5

)

Details
Displacements)

Laplacian Gradient Normal
operator projection

operator

3

Input image 3D reconstruction 5|



Encoder design
Query-specific
feature encoding

IM-Net, OCC-Net, DeepSDF,

CVPR 2019

% Convolutional occupancy

network (ConvONet) — 2020

IF-Net — 2020

Point2Surf — 2020

AIR-Net — 2021

SA-ConvONet - 2021

POCO - 2022

3DILG - 2022

% ARO-Net via Anchored
Radial Observations - 2023

52



Why encode query-specific shape features?

** Network is trained to predict occupancy/SDF *at* a query point

*» Local feature encoding is better than global, learning features with
respect to the query point is even better

53



Query-specific, contextual, shape features

[Wang et al. CVPR 2023]

ARO-Net: Learning Implicit Fields from Anchored Radial Observations

Yizhi Wang!'?} Zeyu Huang!? Ariel Shamir®, Hui Huang!, Hao Zhang?, Ruizhen Hu'!?
1Shenzhen University 2Simon Fraser University *Reichman University

Encode features with respect
to a fixed set of anchors

ot

o 8,

Task: 3D reconstruction from
sparse point clouds

54



Query-specific, contextual, shape features

[Wang et al. CVPR 2023]

ARO-Net: Learning Implicit Fields from Anchored Radial Observations

Yizhi Wang!'?} Zeyu Huang!? Ariel Shamir®, Hui Huang!, Hao Zhang?, Ruizhen Hu'!?
1Shenzhen University 2Simon Fraser University *Reichman University

3.;- Loy .7 Key idea: encode query-specific and contextual (local-to-global) features
B G by making observations from the anchors towards the query point
{ “What does the shape look like from the perspectives of the anchors
T e towards the query point!” — from a perceptual point of view

55



Query-specific, contextual, shape features

[Wang et al. CVPR 2023]

Yizhi Wang!'?} Zeyu Huang!? Ariel Shamir®, Hui Huang!, Hao Zhang?, Ruizhen Hu'!?
1Shenzhen University 2Simon Fraser University *Reichman University

ARO-Net: Learning Implicit Fields from Anchored Radial Observations

19p0o9 porduy

- o = T
S S fi Il >
A > - &
NI g 2
3 S 5 | — L[ 8
: Y g
ol - ()
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Closest points from anchor g; [ L1

[

occ(x)
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Generalizability and quality of reconstruction

Airplanes

ARO-Net

GT mesh

3D Reconstruction from sparse point clouds by ARO-Net

Animals

trained on 4K chairs

[Wang et al. CVPR 2023]



Generalizability and quality of reconstruction

Training data

[Wang et al. CVPR 2023]



Generalizability and quality of reconstruction

Input (1024) IM-Net OccNet BPS ConvONet Points2Surf UNDC ARO-Net GT mesh

[Wang et al. CVPR 2023]



An evolution of neural implicit (2019 - now)

IM-Net, OCC-Net, DeepSDF, Decoder design

CVPR 2019

/ X models

Semantic parts Low-level primitives

j L Learn structured

60



An evolution of neural implicit (2019 - now)

IM-Net, OCC-Net, DeepSDF,
CVPR 2019

/

Decoder design

/ N models

Semantic parts Low-level primitives

IM-Net - 2019

E =

BAE-Net - 2019

S

BSP-Net - 2020

j L Learn structured

6l



Can IM-NET learn shape parts (the right boxes)

AN

We care about shape parts = structures

Wrong boxes!?

The right boxes

62



Can IM-NET learn shape parts?

¢ Original IM-Net trained with reconstruction loss

FC, FC

LReLU LRelU

Feature Vector .
—_— - > —{ | Final output
Point coordinate

63



Key: add a branching layer

¢ Same reconstruction loss, with no part label as supervision

//5 Training: reconstruction loss y( [Chen et aI., ICCV 201 9]

/// /;ﬁf‘(’ﬁ A “ : y. / ”\\
‘ ‘é/( \r\\ : . . .
Voxel Model L1 Implicit field
— represented by
L2 L3 the final output
k neurons (branches)
- O
Feature Vector ]
— | | — <: [IJ Final output
FC, FC, \ ] Max
Point coordinate LReLU LReLU Fo : pooling
Sigmoid

Branching in last layer
is the only change!



Branched IM-NET to learn shape parts

¢ Same reconstruction loss, with no part label as supervision

// Training: reconstruction loss y‘ C
”'./ SN o/
h r

N
Voxel Model L1 Implicit field l‘/:? . e
_ represented by t/O fé
L2 L3 the final output 1) ’>
| k neurons (branches) 0/74/
/ - Branch #3 Branch #4 Branch #5
Feature Vector ~ >~ ranc ranc ranc
> — [] Final output o 7
FC, FC, ? O max o /
Point coordinate LRelLU LReLU - 5 pooling V.
Sigmoid g
|| \
\
T

[Chen et al_, ICCV 20 | 9] Branch #7 Branch #11 ) | Other branches

65



Unsupervised and 1-shot co-segmentation

“*Unsupervised BAE-NET =

Branched Autoencoder t@ ‘Yl J‘ @ @ @
*» Repeatedly train on a set of #

unlabeled shapes with only & m “ m
Woﬁg%
ﬁ A

One-shot learning by BAE-NET on chair co-segmentation

[Chen et al., ICCV 2019]

shape reconstruction loss

% One-shot learning with just
1, or 2, or 3 labeled shapes,
via label reconstruction loss

66



Why does this work?

*» Exploit the structure of small implicit field network (IM-Net)

L1
] L2 L3
] k neurons (branches)
Feature Vector / o
sl B oeena <: [] Final output
FC, FC, \ O 4 max
Point coordinate LReLU LReLU Fo : pooling
Sigmoid

[Chen et al., ICCV 2019]



Why does this work?

*» Exploit the structure of small implicit field network (IM-Net)

*» Small = shallow network (3 layers only) and few neurons

3,072

128

Feature Vector I

FC.
Point coordinate LReLU

128

| ,624

384

|2 Unsupervised learning

[]
~ > []
[] Final output
FC, \ ] ?
LReLU :

n One-shot learning

[Chen et al., ICCV 2019]
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Consequence of a compact network

¢ Must find compact and hence consistent reps = parts

Input Output (L3) Final
Image  branch 1 branch 2 branch 3 branch4  output

A

synthetic 2D pattern

images consisting of a
cross,a A ,anda ¢,
randomly placed.
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Interpret what each layer learns ...

*» A closer look at neural activation maps in each layer

Layer 1 learn linear gradient fields

- AN - ]E!ﬂ!!
- | * - oK. M-
-HII = EEII

Trained on the “Elemen Trained on the “Three rings” images




Make this “interpretability” explicit

*» Let neurons in L, layer represent planes explicitly

*» Layer L, combines planes into convex shape primitives

Connections T

JU .

Blnary weights to group planes to

Convexes from C .

Output shape §*

form convexes
A L
Weights to merge convexes into
’ final, possibly concave, shape
L;

71



BSP-NET: another neural implicit model

 1/0O the same as |M-NET, with
same reconstruction loss

 NEW: shapes are formed via
binary space partitioning (BSP)

*» Planes defined by learned weights I

Like IM-NET

Point coordinates

Xnx4

Voxels / Images

l Encoder

Feature code

lMLP

Plane parameters (P x4)

g

Lo

Each neuron a BSP

Output shape §* ’

w L, Signed distances (D, = XPT)

[Chen et al., CVPR 2020]
Best Student Paper Award
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BSP-NET: directly produce compact meshes

** The network learns how to best reconstruct the set of
training 3D shapes using N (e.g., 4,096) planes

73



BSP-NET: directly produce compact meshes

*» At inference, obtain planes and convexes based on input

¢ Output mesh directly, no Marching Cubes

< Compact: small # planes \' A

S

s Sharp features

\\u b

(a) BSP Net output (b) lM NET output
(1,038 vert 219 polyg ) triangles) (sampled at 2 s, iangles) 74




An evolution of neural implicit (2019 - now)

Encoder design
Global + local Query-specific
feature encoding  feature encoding

Decoder design

Low-level primitives

IM-Net, OCC-Net, DeepSDF,
CVPR 2019

/

Direct mesh outputs

F BSP-Net - 2020

Neural Marching Cubes (NMC) - 2020

= =
Neural Dual Contouring (NDC) - 2022

= =
MobileNeRF - 2023 75




An evolution of neural implicit (2019 - now)

Encoder design
Global + local Query-specific
feature encoding  feature encoding

Decoder design

Semantic parts Low-level primitives

IM-Net, OCC-Net, DeepSDF,
CVPR 2019

/

@Iane primitive

BSP-Net - 2020

Quardric primitive +
CSG trees

CAPRI-Net - 2022

76



s BSP-Net extension with quadric primitives and difference operation

¢ Goal: to produce compact CSG trees, without GT supervision

Primitives

%: . a1 |b1| So g1
Shape D Primitive |, - ALY 92
Encoder Prediction :

' la,l|lb,| 9,

Input Primitives L,
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s BSP-Net extension with quadric primitives and difference operation
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*» Trainable over ABC dataset (without class labels)
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* 3D primitive assemblies from sparse and wide-baseline views

Assembly of convexes

Input images

[Yu et al. ECCV 2024]
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% Primitive assembly is differentiable, without 3D supervision

Tnput images Assembly of convexes Textured shape

[Yu et al. ECCV 2024]
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% Generated primitive assembly directly supports editing

Assembly of convexes Textured shape

Input images

[YU et al. ECCV 2024] Edited shape



Slice3D:
Multi-Slice, Occlusion-Revealing,
Single View 3D Reconstruction

Wallace Lira Wengqi Wang Ali Mahdavi-Amiri  Hao (Richard) Zhang

GrUVi Lab, Simon Fraser University
Project website: https://yizhiwang96.github.io/Slice3D/
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