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Start with Marching Cubes
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• Issue #1: unable to recover sharp features



Start with Marching Cubes
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• Issue #2: model-driven — need assumption on unknowns
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Recall: asymptotic decider uses bilinear interpolation 



Natural assumption in 3D: trilinearity
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• Results of using trilinear interpolants



Marching Cubes 33 [Chernyaev 1995] 
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• Enumerated all topological cases based on trilinearity



Neural Marching Cubes (NMC)
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• Data-driven: learn tessellations from training data

[Chen and Zhang, 
SIGGRAPH Asia 2021]



MC vs. NMC cases in 2D
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MC vs. NMC cases in 2D
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Associating face and corner vertices 
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Fixed-length vectors to store tessellations
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Four edge vertices 
Four face vertices with 
association to corners



Fixed-length vectors to store tessellations
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Fixed-length vectors to store tessellations
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Edge vertex has one 
DOF = one float 
Face vertex has two 
DOFs = two floats



3D case to parameterize a cube tessellation
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12 edge vertices 
4 face vertices per cube face
8 additional interior vertices



Cube tessellation cases
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Neural network to predict tessellations
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• A 3D CNN is trained to predict topological cases and 
vertex positions for all cubes

• Use a 73 receptive field to provide local contexts

3D Residual Network or ResNet 
(a 3D CNN formed by residual 

blocks that learn residual 
functions)

N x M x K field 
values at grids

N x M x K x 5 Booleans

N x M x K x 51 Floats



Training set: ABC

16

• A Big Cad dataset: consisting of CAD models



Qualitative results and comparison
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NMC-Lite with simpler tessellations
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Different tessellation designs require different Ground Truth (GT) data 
preparation to supervise the 3D CNN training



Qualitative results and comparison
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Youtube video on NMC presentation
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https://youtu.be/O7NFYN3YzDM?si=a55JVztKUcaxJixw



Pros and cons of NMC

21

😀 Generalizes well to broad range of shapes: local receptive fields

😀 Data-driven and excels at recovering sharp features



Pros and cons of NMC

22

😀 Generalizes well to broad range of shapes: local receptive fields

😀 Data-driven and excels at recovering sharp features

🙁 Tessellation templates more complex than those of MC/MC33 

🙁 Output 4-8x more triangles

🙁 Incurs 100x computation time to reconstruct a mesh 



Follow-up: neural dual contouring (NDC)

23

v First, classical dual contouring (DC)

[Chen et al. SIGGRAPH 2022]

Inputs: vertex signs, 
intersection points 

and normals



Classical dual contouring: require normals
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v First, classical dual contouring (DC)

[Chen et al. SIGGRAPH 2022]

Inputs: vertex signs, 
intersection points 

and normals

Interior vertices 
solved via quadratic 
error minimization

Mesh tessellation



Neural dual contouring (NDC): no normals
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v NDC: train CNNs to directly predict vertex signs and positions

[Chen et al. SIGGRAPH 2022]

Inputs: vertex signs, 
intersection points 

and normals

Interior vertices 
solved via quadratic 
error minimization

Both vertex signs (e.g., 
with point cloud as input) 

and interior vertex 
positions are predicted



Unsigned neural dual contouring (UNDC)
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v Unsigned NDC: directly predict edge flags and vertex positions

[Chen et al. SIGGRAPH 2022]

Inputs: vertex signs, 
intersection points 

and normals

Interior vertices 
solved via quadratic 
error minimization

Both edge intersection 
flags and interior vertex 
positions are predicted



Neural dual contouring (NDC)
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v Can take on 
various inputs



NMC vs. NDC (aside)
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NMC vs. NDC (aside)
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UNDC results with open surfaces
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Comparing predicted tessellations
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Comparison on SDF inputs
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Comparison on binary voxel inputs
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Comparison on unoriented point clouds
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Youtube video on NDC presentation (aside)
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https://www.youtube.com/watch?app=desktop&v=uQV9GqeKaQg



Overview of neural surface reconstruction

36

• Perhaps the most popular problem in geometric DL

NeurIPS 2021 paper with 1,400+ citationsThree CVPR 2019 papers with a combined citation counts of 8,300+



Overview of neural surface reconstruction
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• Perhaps the most popular problem in geometric DL

• Most produce a neural field, e.g., SDF, NeRF (for NVS)
• NMC and NDC are exceptions

• Many inputs: point clouds (early) and images (recent)

NeurIPS 2021 paper with 1,400+ citationsThree CVPR 2019 papers with a combined citation counts of 8,300+



Typical approach
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An Encoder Some latent 
representation or code

Input: point 
cloud, image(s), 

even text

First critical question: 
What features do we encode from the inputs? 

Global, local, local+global?
Early works: local image/point cloud features, 

using ResNet, VGG, PointNet, etc.



Typical approach
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An Encoder
Input: point 

cloud, image(s), 
even text

Some latent 
representation or code

A Decoder into your 
“favor representation”

Next critical question: 
What is this “representation?” 



Typical approach
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An Encoder
Input: point 

cloud, image(s), 
even text

Some latent 
representation or code

A Decoder into your 
“favor representation”

Turn your representation into SDF 
(or it is already SDF) with loss 

against GT SDF values (i.e., IM-SVR)



Typical approach
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An Encoder
Input: point 

cloud, image(s), 
even text

Some latent 
representation or code

A Decoder into your 
“favor representation”

Turn your representation into images 
with losses against input images

A Differentiable Render



Examples: start from IM-Net

42IM-Net [Chen and Zhang, CVPR 2019]

Encoder design



IM-SVR (single-view reconstruction)

43IM-Net [Chen and Zhang, CVPR 2019]

Encoder design

v Global features: ResNet



IM-SVR (single-view reconstruction)

44IM-Net [Chen and Zhang, CVPR 2019]

Decoder design

v Global features: ResNet

v IM-decoder into in/outside

v Marching Cubes to mesh



An evolution of neural implicit (2019 - now)

45IM-Net [Chen and Zhang, CVPR 2019]

Encoder design

v Global (2019) to local



An evolution of neural implicit (2019 - now)

46IM-Net [Chen and Zhang, CVPR 2019]

Encoder design

v Global (2019) to local 

v What role does the query 
point (coordinate) play?



An evolution of neural implicit (2019 - now)

47IM-Net [Chen and Zhang, CVPR 2019]

Decoder design



An evolution of neural implicit (2019 - now)

48IM-Net [Chen and Zhang, CVPR 2019]

Decoder design

Structured models

v Semantic parts 
vs. primitives?

v What primitives?



An evolution of neural implicit (aside)
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IM-Net, OCC-Net, DeepSDF, 
CVPR 2019

Encoder design

Global + local 
feature encoding

• PIFu - 2019
• Deep implicit surface 

network (DISN) – 2020
• Deep local shape - 2020
• Local implicit grid 

representations - 2020
• Local deep implicit 

functions (LDIF) – 2020
• PatchNets – 2020
v D2IM-Net – 2022, …



Learning to recover shape/surface details
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v Encode both global and local features for single-view reconstruction
v Generally, only global encoding leads to coarse/blurry shapes 



Recover shape/surface details (aside)
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v Encode both global and local features for single-view reconstruction
v Generally, only global encoding leads to coarse/blurry shapes 

D2IM-Net: Learning Detail Disentangled Implicit Fields from Single Images [Li and Zhang CVPR 2021]

Input image 3D reconstruction

c



An evolution of neural implicit (aside)
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IM-Net, OCC-Net, DeepSDF, 
CVPR 2019

Encoder design

Global + local 
feature encoding

Query-specific 
feature encoding

v Convolutional occupancy 
network (ConvONet) – 2020

• IF-Net – 2020
• Point2Surf – 2020
• AIR-Net – 2021
• SA-ConvONet - 2021
• POCO – 2022
• 3DILG – 2022
v ARO-Net via Anchored 

Radial Observations - 2023



Why encode query-specific shape features?
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v Network is trained to predict occupancy/SDF *at* a query point

v Local feature encoding is better than global, learning features with 
respect to the query point is even better



Query-specific, contextual, shape features
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[Wang et al. CVPR 2023]

Task: 3D reconstruction from 
sparse point clouds

Encode features with respect 
to a fixed set of anchors



Query-specific, contextual, shape features
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[Wang et al. CVPR 2023]

Key idea: encode query-specific and contextual (local-to-global) features 
by making observations from the anchors towards the query point

“What does the shape look like from the perspectives of the anchors 
towards the query point?” — from a perceptual point of view



Query-specific, contextual, shape features
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[Wang et al. CVPR 2023]

Closest points from anchor ai



Generalizability and quality of reconstruction
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[Wang et al. CVPR 2023]



Generalizability and quality of reconstruction
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[Wang et al. CVPR 2023]



Generalizability and quality of reconstruction

59
[Wang et al. CVPR 2023]



An evolution of neural implicit (2019 - now)
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IM-Net, OCC-Net, DeepSDF, 
CVPR 2019

Encoder design

Global + local 
feature encoding

Query-specific 
feature encoding

Decoder design

Semantic parts Low-level primitives

Learn structured 
models



An evolution of neural implicit (2019 - now)
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IM-Net, OCC-Net, DeepSDF, 
CVPR 2019

Encoder design

Global + local 
feature encoding

Query-specific 
feature encoding

Decoder design

Semantic parts Low-level primitives

IM-Net - 2019

BAE-Net - 2019

Learn structured 
models

BSP-Net - 2020



Can IM-NET learn shape parts (the right boxes)

Wrong boxes? The right boxes

We care about shape parts = structures

62



Can IM-NET learn shape parts?
v Original IM-Net trained with reconstruction loss
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……..



v Same reconstruction loss, with no part label as supervision

64

Key: add a branching layer

Branching in last layer 
is the only change!

[Chen et al., ICCV 2019]



v Same reconstruction loss, with no part label as supervision
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Branched IM-NET to learn shape parts

Colors are for 

illustration only

[Chen et al., ICCV 2019]



Unsupervised and 1-shot co-segmentation

[Chen et al., ICCV 2019]

vUnsupervised BAE-NET = 
Branched Autoencoder

vRepeatedly train on a set of 
unlabeled shapes with only 
shape reconstruction loss

vOne-shot learning with just 
1, or 2, or 3 labeled shapes, 
via label reconstruction loss

One-shot learning by BAE-NET on chair co-segmentation

66
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Why does this work?
v Exploit the structure of small implicit field network (IM-Net)

[Chen et al., ICCV 2019]



68

Why does this work?
v Exploit the structure of small implicit field network (IM-Net)

v Small = shallow network (3 layers only) and few neurons

128
3,072

384 12 Unsupervised learning

128
1,024

256 n One-shot learning

[Chen et al., ICCV 2019]
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Consequence of a compact network
v Must find compact and hence consistent reps ⇒ parts

Trained on “Elements”, 
synthetic 2D pattern 
images consisting of a 
cross, a ▲ , and a ◆ , 
randomly placed.



Interpret what each layer learns …
v A closer look at neural activation maps in each layer

Layer 1 learn linear gradient fields
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…

… …

…

Trained on the “Elements” images Trained on the “Three rings” images



Make this “interpretability” explicit
v Let neurons in L1 layer represent planes explicitly

v Layer L2 combines planes into convex shape primitives
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Binary weights to group planes to 
form convexes

Weights to merge convexes into 
final, possibly concave, shape

L1

L3

L2



BSP-NET: another neural implicit model
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L1

L3

L2
[Chen et al., CVPR 2020]

Best Student Paper Award

Like IM-NETv I/O the same as IM-NET, with    
same reconstruction loss

v NEW: shapes are formed via  
binary space partitioning (BSP)

v Planes defined by learned weights

Each neuron a BSP



BSP-NET: directly produce compact meshes

v The network learns how to best reconstruct the set of 
training 3D shapes using N (e.g., 4,096) planes

73



BSP-NET: directly produce compact meshes

v The network learns how to best reconstruct the set of 
training 3D shapes using N (e.g., 4,096) planes

v At inference, obtain planes and convexes based on input 

v Output mesh directly, no Marching Cubes 

v Compact: small # planes

v Sharp features 

74



An evolution of neural implicit (2019 - now)
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IM-Net, OCC-Net, DeepSDF, 
CVPR 2019

Encoder design

Global + local 
feature encoding

Query-specific 
feature encoding

Decoder design

Semantic parts Low-level primitives

IM-Net - 2019

BAE-Net - 2019

BSP-Net - 2020
Direct mesh outputs

Neural Dual Contouring (NDC) - 2022

MobileNeRF - 2023

Neural Marching Cubes (NMC) - 2020



An evolution of neural implicit (2019 - now)
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IM-Net, OCC-Net, DeepSDF, 
CVPR 2019

Encoder design

Global + local 
feature encoding

Query-specific 
feature encoding

Decoder design

Semantic parts Low-level primitives

IM-Net - 2019

BAE-Net - 2019

BSP-Net - 2020

Plane primitive

CAPRI-Net - 2022

Quardric primitive + 
CSG trees



v BSP-Net extension with quadric primitives and difference operation

v Goal: to produce compact CSG trees, without GT supervision

77

CAPRI-Net: [Yu et al., CVPR 2022]

Learning primitive assemblies (aside)



v BSP-Net extension with quadric primitives and difference operation

v Goal: to produce compact CSG trees, without GT supervision
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CAPRI-Net: [Yu et al., CVPR 2022]

Learning primitive assemblies (aside)



v BSP-Net extension with quadric primitives and difference operation

v Goal: to produce compact CSG trees, without GT supervision
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CAPRI-Net: [Yu et al., CVPR 2022]

Learning primitive assemblies (aside)



v BSP-Net extension with quadric primitives and difference operation

v Goal: to produce compact CSG trees, without GT supervision
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CAPRI-Net: [Yu et al., CVPR 2022]

Learning primitive assemblies (aside)



v BSP-Net extension with quadric primitives and difference operation

v Goal: to produce compact CSG trees, without GT supervision

81

CAPRI-Net: [Yu et al., CVPR 2022]

Learning primitive assemblies (aside)

Learned CSG trees



v Trainable over ABC dataset (without class labels)
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CAPRI-Net: compact primitive assembly (aside)

vs.
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v 3D primitive assemblies from sparse and wide-baseline views

[Yu et al. ECCV 2024]

CAPRI-Net from multi-view images (aside)
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v Primitive assembly is differentiable, without 3D supervision

[Yu et al. ECCV 2024]

DPA-Net: differentiable primitive assembly (aside)
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v  Generated primitive assembly directly supports editing

[Yu et al. ECCV 2024]

DPA-Net: differentiable primitive assembly (aside)
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Final example: a “smart” representation (aside)


