

Classical Surface Reconstruction

Richard Zhang

CMPT 464/764: Geometric Modeling in Computer Graphics

Lecture 8

Single-view input

 A prototypical computer vision problem: 3D geometry/surface reconstruction from single or multiple view sensors (images)

Classical "shape from shading" result

Multi-view input

- A prototypical computer vision problem: 3D geometry/surface reconstruction from single or multiple view sensors (images)
 - Visual hull: shape from multi-view silhouettes

Learning-based: single-view

A prototypical computer vision problem: 3D geometry/surface reconstruction from a single or multiple view sensors (images)

One of the most intensely studied problems in geometric deep learning

[IM-Net: Chen and Zhang 2019]

Learning-based: multi-view

A prototypical computer vision problem: 3D geometry/surface
 reconstruction from a single or multiple view sensors (images)

- NeRF (2020): Neural Radiance Field, from multi-view images
- Novel view synthesis (NVS): need many images and long training

Learning-based: multi-view

Connections between IM-Net and NeRF

[IM-Net: Chen and Zhang 2019]

See: Account from "NeRF Explosion"

Frank Dellaert

Publications

Teaching Talks Blog Posts

Frank Dellaert

Professor, Robotics & Computer Vision

- Atlanta, GA
- Georgia Tech
- 🖂 Email
- Twitter
- in LinkedIn
- O Github
- YouTube
- Coogle Scholar

NeRF Explosion 2020

21 minute read

Published: December 16, 2020

The result that got me hooked on wanting to know everything about NeRF :-).

https://dellaert.github.io/NeRF/

This week: from a "graphics origin"

Given a set of **unorganized 3D points** $X = {\mathbf{x}_1, ..., \mathbf{x}_n}$ sampled from an unknown surface *M*, construct a surface *M*' that approximates *M*.

Surface reconstruction from unorganized point cloud data

Background

- Input: point cloud obtained via laser scanning with no normal information
- <u>Output:</u> a triangle mesh
- Surface M' can either interpolate or approximate X
- Solve a general problem: no structure or organization of points assumed ...
 - Here structural information refers to specific knowledge about the arrangement of the point samples, e.g., contours on parallel slices in MRI
 - Some info about the device specs can be known, e.g., scanning accuracy
 - Normal information may be available via photometric stereo [Woodham 80]

Photometric stereo

state a subject as a subject of the bases of the base of the base

Estimate surface orientation from different images

Many related problems

anna a suite a suite an 1997 😌 bassa 🖉 tale 200 km anna 1997 🖓 anna 1997 an 1997 an

(Static) surface registration: bring several partial scans to alignment

Key: point or region correspondence - a topic we cover later

Many related problems

Multi-view geometry reconstruction, e.g., Microsoft photosynth

 Sub-problems: shape-from-shading, e.g., photo to point clouds, and (multi-view) point cloud registration

Many related problems

anter en anter en la calega de la companya de la calega de la c

Time-varying surface tracking, e.g., for deformation or animation

Problem scales

From single objects (our focus) to scenes to buildings and cities!

Scaling up from objects to scenes [Shao et al. Siggraph Asia 2012]

Our problem: challenges

- Reconstruction should cover a range of shapes
 - Arbitrary topology, even if manifold, and arbitrary details
 - Shapes with **boundaries**, **holes**, **missing data**, etc.

Challenges

- Ensure consistent surface orientation
- Deal with noise in the data
- Recover sharp features: not easy if points are not on edges

Feature-sensitive reconstruction [Kobbelt et al. 2001]

Missing data and noise

Theoretical challenge (aside)

Ensure "correctness" of reconstruction, meaning

- Topology correctness
- Geometry precision: as sampling density increases, reconstruction approaches the original surface

- Correctness guarantees possible if sampling is sufficiently "good" – not easy to achieve or define "goodness" [Amenta et al. 98]
 - Related to local feature size: distance to medial axis

Medial axis (aside)

Singularities or meeting fronts of a "grass-fire flow"

- Set of all points that have at least two closest points to the boundary
- Medial axes for 3D shapes have sheets rather than curves

Classical main approaches

- Reconstruct zero-set of a 3D scalar field, e.g., via marching cubes
 - Use of tangent plane estimators [Hoppe et al. 92]

- Use of radial basis functions [Carr et al. 01]
- Utilizing Voronoi diagrams or Delaunay Tetrahedralizations [Amenta et al. 01, Boissonnat 84, Dey & Goswami 03, Kolluri et al. 04]
 - Power crust algorithm [Amenta et al. 01]
- Deform-to-fit with energy minimization
 - e.g., inflating a balloon from inside the object [Terzopoulos, Witkin, and Kass 88 & 91, Miller 91]

Classical main approaches

ander ander van de de later het de de state die ander die de de state de state de state de state de state de sta

- Reconstruct zero-set of a 3D scalar field, e.g., via marching cubes
 - Use of tangent plane estimators [Hoppe et al. 92]
 - Use of radial basis functions [Carr et al. 01]
- Utilizing Voronoi diagrams or Delaunay Tetrahedralizations –
 [Amenta et al. 01, Boissonnat 84, Dey & Goswami 03, Kolluri et al. 04]
 - Power crust algorithm [Amenta et al. 01]
- Deform-to-fit with energy minimization
 - e.g., inflating a balloon from inside the object [Terzopoulos, Witkin, and Kass 88 & 91, Miller 91]

Hugues Hoppe

<u>Google</u> Verified email at google.com - <u>Homepage</u> Computer Graphics

TITLE	CITED BY	YEAR
Progressive meshes H Hoppe Proceedings of the 23rd annual conference on Computer graphics and	4785	1996
Surface reconstruction from unorganized points H Hoppe, T DeRose, T Duchamp, J McDonald, W Stuetzle Proceedings of the 19th annual conference on Computer graphics and	4035	1992

- H. Hoppe et al., "Surface Reconstruction from Unorganized Points." SIGGRAPH 92
- W. Lorensen and H. Cline, "Marching Cubes: A High Resolution 3D Surface Construction Algorithm," *SIGGRAPH* 87
 - A sub-algorithm of the surface reconstruction algorithm

Our coverage

- One of most fundamental surface reconstruction algorithms itself
- Input is volumeric data or scalar field of signed distances to surfacee
- Algorithm constructs approximation of the zero-set of the scalar field

Hugues Hoppe

<u>Google</u> Verified email at google.com - <u>Homepage</u> Computer Graphics

TITLE	CITED BY	YEAR
Progressive meshes H Hoppe Proceedings of the 23rd annual conference on Computer graphics and	4785	1996
Surface reconstruction from unorganized points H Hoppe, T DeRose, T Duchamp, J McDonald, W Stuetzle Proceedings of the 19th annual conference on Computer graphics and	4035	1992

 H. Hoppe et al., "Surface Reconstruction from Unorganized Points." SIGGRAPH 92

• W. Lorensen and H. Cline, "Marching Cubes: A High Resolution 3D

	Bill Lorensen GE Global Research (retired) Verified email at nycap.rr.com - <u>Homepage</u>		FOLLOW	
TITLE		CITED BY	YEAR	
WE Lorensen, HE Clir	A high resolution 3D surface construction algorithm ne ter graphics 21 (4), 163-169	16729	1987	
https://www.computer.org/csdl/magazine/cg/2020/02/09020249/1hS2S5b2V6E				

Our coverage

Assumptions

ne na ser and a ser a

on data noise (measurement error)

- The samples $X = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ are δ -noisy, i.e., each sample is no farther than δ away from its true position
- Features of size less $< \delta$ cannot be recovered reliably

... on sampling density

- ρ -dense: within each sphere centered at a point on surface *M* having radius ρ , at least one sample is drawn
- This assumption is necessary in order to distinguish between holes in surface (boundary) and holes in the sampling
- If there is an empty sphere with radius $(\delta + \rho)$ embedded in the sampling, then it is a hole in the model

Overview of Hoppe's approach

- Input: set X of unorganized 3D points (δ-noisy; ρ-dense) sampled near surface M
- Algorithm in two stages
 - 1. Obtain an **implicit function** $f: D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R}^3$, is a **region near true surface** *M*, and $f(\mathbf{p})$ estimates the **signed distance** from **p** to *M*
 - 2. The zero-set Z(f) of f is an estimate of M. A contouring or marchingcube algorithm approximates Z(f) by a triangle mesh
- Output: a connected, consistently oriented 2-manifold triangle mesh
- A general paradigm: implicit function *f* can be obtained in various ways, Hoppe paper uses a set of approximate tangent planes

Learning of implicit/signed distance functions

and a second second state in the internal second second second second second second second second second second

Generates surfaces with best visual quality so far

Learning Implicit Fields for Generative Shape Modeling

Zhiqin Chen, Hao Zhang

(Submitted on 6 Dec 2018 (v1), last revised 5 Apr 2019 (this version, v3))

Occupancy Networks: Learning 3D Reconstruction in Function Space

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, Andreas Geiger

(Submitted on 10 Dec 2018)

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, Steven Lovegrove

(Submitted on 16 Jan 2019)

Deep Level Sets: Implicit Surface Representations for 3D Shape Inference

Mateusz Michalkiewicz, Jhony K. Pontes, Dominic Jack, Mahsa Baktashmotlagh, Anders Eriksson

(Submitted on 21 Jan 2019)

Awesome implicit neural representations: https://github.com/vsitzmann/awesome-implicit-representations

Signed distance function (SDF)

- Distance from a point p to a surface M is the distance from p to a closest point on M
- Sign depends on which side of *M* point **p** lies
- Since *M* is unknown, it is approximated by a set of oriented tangent planes one per data point
- **Tangent plane for \mathbf{x}_i is defined by a center \mathbf{o}_i and a unit normal \mathbf{n}_i**

Computing SDF, given tangent planes

- Determine region D close to surface M
- If $\mathbf{p} \in D$, the signed distance from \mathbf{p} to M is a projection

 $f(\mathbf{p}) = (\mathbf{p} - \mathbf{o}_i) \cdot \mathbf{n}_i$

_n;

where o_i is the tangent plane center that is closest to p

- If the shortest distance from a point **p** to the point set X is > $(\delta + \rho)$, then **p** cannot be on the surface M
 - Otherwise, the sphere centered at **p** with radius $\delta + \rho$ must contain a point from *X*, since the samples are δ -noisy and ρ -dense
 - **p** is possibly near a hole on the surface \rightarrow **f**(**p**) is undefined
 - The remaining set of p define D

Tangent plane estimation – key!

• How to define a tangent plane associated with a sample \mathbf{x}_i ?

- Define: Nbr(x_i, k) = the set of k nearest neighbors (kNN) of a data point x_i, where k is a user input value
- Center \mathbf{o}_i is the centroid of $Nbr(\mathbf{x}_i, k)$

- Normal n_i is determined by principal component analysis (PCA)
- The oriented plane passing through o_i having normal +/- n_i provides the least squares best fit to points in Nbr(x_i, k)

PCA: Linear dimensionality reduction

Linearly map a set of *m*-dimensional vectors {a₁, ..., a_n}, to an *k*-dimensional subspace, *k* < *m*, so as to minimize the approximation error in the least square sense

Principal component analysis (PCA)

Project data points a_i onto the leading k eigenvectors (for the k largest eigenvalues) of the covariance matrix Σ for the original data set a

 $\Sigma = (\mathbf{a} - \bar{\mathbf{a}}\mathbf{1}^T)(\mathbf{a} - \bar{\mathbf{a}}\mathbf{1}^T)^T = \Sigma_{j=1..n}(\mathbf{a}_j - \bar{\mathbf{a}}) \cdot (\mathbf{a}_j - \bar{\mathbf{a}})^T \in \mathbf{R}^{m \times m}$

where \bar{a} is the (uniform) mean of data points in a.

- Eigenvectors: orthogonal and major modes of variations
- A k-dimensional embedding is obtained by

$$\hat{\mathbf{a}}_{(k)} = E_{(k)}^{T} \mathbf{a},$$

where $E_{(k)} \in \mathbb{R}^{m \times k}$ has k columns of leading eigenvectors of Σ .

PCA

entere a contra su de la calta deserva el compañía de la compañía de la contra de la contra de contra de contra

Project data points a_i onto the leading k eigenvectors (for the k largest eigenvalues) of the covariance matrix Σ for the original data set a

 $\Sigma = (\mathbf{a} - \bar{\mathbf{a}} \mathbf{1}^T)(\mathbf{a} - \bar{\mathbf{a}} \mathbf{1}^T)^T = \Sigma_{j=1..n} (\mathbf{a}_i - \bar{\mathbf{a}}) \cdot (\mathbf{a}_i - \bar{\mathbf{a}})^T \in \mathbf{R}^{m \times m}$

where \bar{a} is the (uniform) mean of data points in a.

Normal of the tangent plane

Covariance matrix Σ of 3D points in Nbr(x_i, k) is a symmetric (positive semi-definite) 3 × 3 matrix

- The normal chosen for Nbr(x_i, k) is +/- of the eigenvector of Σ corresponding to the smallest eigenvalue of Σ
- The 2-dimensional subspace, i.e., the plane, is spanned by the other two eigenvectors
- The exact sign of the normal is chosen so that nearby tangent planes are consistently oriented

Derivation of PCA (aside)

- Given a set of 3D points x₁, ..., x_k, find a best fitting plane (o, n) in the least squares sense, where o is a point on the plane and n is the unit plane normal
- The minimization problem:
- Use Lagrange Multiplier:

$$\min \sum_{i=1}^{k} [(x_i - o)^T \cdot n]^2 \text{ subject to } n^T n = 1$$
$$\min F(o, n, \lambda) = \sum_{i=1}^{k} [(x_i - o)^T \cdot n]^2 - \lambda (n^T n - 1)$$

- We assume that $n = (n_x, n_y, n_z)^T \neq 0$.
- Differentiate *F* with respect to *o*, we have

$$\left[\sum_{i=1}^{k} (x_i - o)^T\right] \cdot n = 0$$

Differentiate *F* with respect to n_x , n_y , n_z and then combine into matrix form, we have

$$\left[\sum_{i=1}^{k} (x_i - o)(x_i - o)^T\right] \cdot n = \lambda n$$

Derivation of PCA (aside)

$$\left[\sum_{i=1}^{k} (x_i - o)(x_i - o)^T\right] \cdot n = \lambda n$$

- So the normal n is an eigenvector of the covariance matrix and there are three local minima corresponding to three eigenvectors
- Alternatively, the minimization problem is really

$$\min \sum_{i=1}^{k} [(x_i - o)^T \cdot n]^2 = n^T \Sigma n, \text{ subject to } n^T n = 1$$

By Courant-Fischer Theorem, this is just an eigenvalue problem

Consistent normal orientation

A harder part of the algorithm – it tells topological information

- One can model it as a global graph optimization problem
 - One node N_i per tangent plane
 - Two nodes connected if the corresponding centers are sufficiently close (where consistent orientation is enforced)
 - Cost of edge (N_i, N_j) is $\mathbf{n}_i \cdot \mathbf{n}_j$ (maximum if coplanar)
 - Problem: Find orientation to maximize the total cost in graph
- But this optimization problem is NP-hard (i.e., its decision version is NP-complete)
Approximate solution

First, build a **Riemannian graph** on tangent plane centers

- Riemannian graph: encodes the geometric proximity of the tangent plane centers
- Riemannian graph is built upon the Euclidean minimum spanning tree (EMST) – connected, tends to connect near neighbors, but there are not enough edges
- Add an edge (N_i, N_j) to EMST if o_i is one of the k closest neighbors of o_i or vice versa

Recall: EMST

- Given a set of points L, an EMST is a spanning tree of L with the minimum total cost (edge cost measured by Euclidean distance)
- Can be obtained via Kruskal's minimum spanning tree algorithm
 - Conceptually consider complete graph on L with Euclidean distances as edge weights
 - Greedily add shortest edges that do not form a cycle
 - Stop when no edges can be added any more

EMST and Riemannian graph

Orientation propagation

To start propagation, choose orientation for an initial plane

- Propagate this orientation to its nearby planes by traversing the Riemannian graph
- Traversal order is important
- A heuristic: propagate along low curvature directions –
 - favor propagation from plane *i* to *j* if they are almost parallel
 - less likely to be a mistake

Algorithm

- Assign weight $(1 |\mathbf{n}_i \cdot \mathbf{n}_j|)$ to edge (N_i, N_j)
- Propagate along edges of minimum spanning tree of the resulting graph (depth-first search)
- How to propagate from \mathbf{n}_i to next plane j?
 - If $\mathbf{n}_i \cdot \mathbf{n}_j < 0$, $\mathbf{n}_j = -\mathbf{n}_j$
- How to choose an initial orientation?
 - Normal of plane whose center has largest z value is forced to point to +z direction

Result

MST of normal variation graph with edge costs colored

Oriented tangent planes as shaded triangles

Recall SDF

- f(p) is signed distance from p to "closest tangent plane"
- Since sampling is δ-noisy and ρ-dense, if f(p) > δ + ρ, then p cannot be on the surface M
 - \rightarrow *f* (**p**) is undefined in this case
- Otherwise, the signed distance from **p** to *M* is a projection

 $f(\mathbf{p}) = (\mathbf{p} - \mathbf{o}_i) \cdot \mathbf{n}_i$

where o_i is the tangent plane center that is closest to p

Why is $f(\mathbf{p})$ not the closest distance from p to any tangent plane?

Contour tracing

- Given the set of oriented tangent planes, SDF from points to these planes can be computed
- Next, need to extract the iso-surface corresponding to the zeroset of the signed distance function
- This can be done using a Marching Cubes (contour tracing) algorithm or one of its variants

Preparation for cubes marching

- Divide 3D space into cubical grids
- Sample signed distance values at cube vertices
- Only choose cubes that intersect the zero iso-surface for efficiency
- Size of cube $d \approx \delta + \rho$, why?
 - if $d >> \delta + \rho$, may fill holes or join boundaries
 - if *d* too small, complexity too high
- No intersection between zero-surface and cube if a vertex has undefined f(p)

Marching cubes algorithm

- Input: a scalar field sampled over the vertices of a cubical grid
- <u>Output:</u> a set of triangles approximating the zero iso-surface of the scalar field
- Basic idea:
 - Process (march) cubes one at a time
 - Look at scalar values at vertices to decide how the iso-surface intersects the cube
 - Generate triangles reflecting these intersections

2D case: iso-contouring

- Inside iso-curve \equiv < and iso-value \equiv -
- Outside iso-curve \equiv > and iso-value \equiv +
- How many topologically different cases are there?

2D case: iso-contouring

anna an ann an Araite ann an Araite ann an 1967 an an Araitean ann an Araitean an Araitean an Araitean ann an A

- Inside iso-curve \equiv < and iso-value \equiv -
- Outside iso-curve \equiv > and iso-value \equiv +
- How many topologically different cases are there?

Iso-contouring algorithm sketch

Divide-and-conquer

- 1. Look at (march) one cell at a time
- 2. Compare the values at 4 corners with iso-value
- 3. Linear interpolate along edges for intersection points
- 4. Connect interpolated points together

Marching cubes

- Generalize iso-contour algorithm to 3D
- March cubes one at a time
- Linear interpolation again
- There are more cases:
 - Total of $2^8 = 256$ cases
 - Reduce to 15 topological cases relying on value and rotational symmetry

Improvements

Exploit spatial coherence

 e.g., for an interior cube, only three new linear interpolations are needed, if cubes are visited in scan-line order

- Need to find efficient ways for cube traversal
 - Typically, roughly n^2 cubes intersect an iso-surface in n^3 cube grid
 - e.g., can use an octree to skip empty regions a great deal of research along this line

The ambiguity problem

 Certain marching cube cases have more than one possible triangulations – may create a hole mistakenly

52

Fixing the ambiguity problem

One consistent way to do it

There is another opposite case:

keep case 3 and change case 6 to 6A

Need to come up with these consistent triangulations

Ambiguous faces

A face with two opposite vertices having the same sign

 How to resolve this ambiguity? — use the asymptotic decider [Nielson & Hamman 91] — somewhat complex and adds cases to original marching cubes

Asymptotic decider: rough idea

Need to examine iso-values inside the face

Inside values are unknown, approximate via bi-linear interpolation

Summary of Hoppe's approach

Surface reconstruction from unorganized points through iso-surface extraction over a signed distance field computed with respect to a set of oriented tangent planes approximating the surface

- Space subdivision helps speed up algorithm (empty cube skipping)
- Constructed surface approximates point cloud
- No theoretical guarantee that the surface is correct
- No mechanism for feature preservation

Unreliability of PCA

- Thick point cloud need thinning
- Non-uniform point distribution
- Close-by surface sheets

New propagation cost (aside)

- Again, the close-by surface sheets problem
- Possible solution: also look at the propagation direction
- Sharp feature detection: should prevent propagation there

Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or, "Consolidation of Unorganized Point Clouds for Surface Reconstruction," ACM Trans. on Graphics (Proceeding of SIGGRAPH Asia 2009), Article 176.

New propagation cost (aside)

Note that $\mathcal{D}_{ij} \in [0, 1]$; it combines Euclidean distance (the denominator), angular distance $|\langle \mathbf{v}_i, \mathbf{v}_j \rangle|$, and a third term $d_{ij} = \max_{r,s \in \{1,2\}} ||m_{rs} - o_{rs}||$, which is designed to weigh in propagation direction.

Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or, "Consolidation of Unorganized Point Clouds for Surface Reconstruction," *ACM Trans. on Graphics (Proceeding of SIGGRAPH Asia 2009)*, Article 176.

Other classical approaches

- Voronoi-based with theoretical guarantee by N. Amenta et al., "A New Voronoi-based Surface Reconstruction Algorithm," SIGGRAPH 98
- α-shape based approaches [Bajaj, Bernardini 95]
- Deform-to-fit with energy minimization (e.g., inflating a balloon in the object)
 [Terzopoulos, Witkin, and Kass 88 & 91, Miller 91]
- Use of radial basis functions [Carr et al. 01, Iske 02]
- Use of Poisson reconstruction [Kazhdan et al. 06]
- Definition of point set surfaces, e.g., MLS = Moving Least Squares [Levin et al. 01, Alexa et al. 02]

From MC to NMC

Use machine learning to improve iso-surfacing

Case 0

Case 6.1.1

Case

(a) Our cube tessellations

Case 6.2

Case 13.3.2 *

Case 3.1.2 *

Case 3.2

Case 7.2.2 *

Case 4.1.2

Case 7.4.1

Case 12.1.2

Case 4.1.1

Case 7.3

Case 7.4.2

Case 12.2

Neural Marching Cubes (NMC) – next week

Neural Marching Cubes

ZHIQIN CHEN, Simon Fraser University, Canada HAO ZHANG, Simon Fraser University, Canada

