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Single-view input

m A prototypical computer vision problem: 3D geometry/surface

reconstruction from single or multiple view sensors (images)

Classical “shape from shading” result




Multi-view Input

Visual hull: shape from multi-view silhouettes




Learning-based: single-view

One of the most intensely studied problems in geometric deep learning
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Learning-based: multi-view

NeRF (2020): Neural Radiance Field, from multi-view images

Novel view synthesis (NVS): need many images and long training
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Learning-based: multi-view

Connections between IM-Net and NeRF
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See: Account from “NeRF Explosion”
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This week: from a “graphics origin”

Given a set of unorganized 3D points X = {x,, ..., X,,;} sampled from
an unknown surface M, construct a surface M’ that approximates M.

Surface reconstruction from unorganized point cloud data




Background

Input: point cloud obtained via laser scanning with no normal information
Output: a triangle mesh
Surface M’ can either interpolate or approximate X

Solve a general problem: no structure or organization of points assumed ...

Here structural information refers to specific knowledge about the arrangement
of the point samples, e.g., contours on parallel slices in MRI

Some info about the device specs can be known, e.g., scanning accuracy

Normal information may be available via photometric stereo




Photometric stereo

m Estimate surface orientation from different images

Camera

Photometric stereo geometry Photometric stereo example images




Many related problems

m (Static) surface registration: bring several partial scans to alignment

m Key: point or region correspondence - a topic we cover later




Many related problems

m  Multi-view geometry reconstruction, e.g., Microsoft photosynth

m Sub-problems: shape-from-shading, €.g., photo to point clouds,
and (multi-view) point cloud registration




Many related problems

m Time-varying surface tracking, e.g., for deformation or animation




Problem scales

m From single objects (our focus) to scenes to buildings and cities!

Scaling up from objects to scenes [Shao et al. Siggraph Asia 2012]




Our problem: challenges

m Reconstruction should cover a range of shapes
Arbitrary topology, even if manifold, and arbitrary details

Shapes with boundaries, holes, missing data, etc.




Challenges

m Ensure consistent surface orientation
m Deal with noise in the data

m Recover sharp features: not easy if points are not on edges

Feature-sensitive reconstruction
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Theoretical challenge (aside) \ |
— NG

m Ensure “correctness” of reconstruction, meaning
Topology correctness

Geometry precision: as sampling
density increases, reconstruction
approaches the original surface

m Correctness guarantees possible if sampling is sufficiently “good”
— not easy to achieve or define “goodness”

Related to local feature size: distance to medial axis




Medial axis (aside)

m Singularities or meeting fronts of a “grass-fire flow”

m Medial axes for 3D shapes have sheets
rather than curves




Classical main approaches

m Reconstruct zero-set of a 3D scalar field, e.g., via marching cubes
Use of tangent plane estimators —

Use of radial basis functions —

m Utilizing Voronoi diagrams or Delaunay Tetrahedralizations —

Power crust algorithm —

m Deform-to-fit with energy minimization

e.g., inflating a balloon from inside the object —




Classical main approaches

m Reconstruct zero-set of a 3D scalar field, e.g., via marching cubes

Use of tangent plane estimators —
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Our coverage

Progressive meshes 4785
H Hoppe
Proceedings of the 23rd annual conference on Computer graphics and ...

Surface reconstruction from unorganized points 4035
H Hoppe, T DeRose, T Duchamp, J McDonald, W Stuetzle
Proceedings of the 19th annual conference on Computer graphics and ...

m H. Hoppe et al., “Surface Reconstruction from Unorganized Points.”
SIGGRAPH 92

m W. Lorensen and H. Cline, “Marching Cubes: A High Resolution 3D
Surface Construction Algorithm,” SIGGRAPH 87

A sub-algorithm of the surface reconstruction algorithm
One of most fundamental surface reconstruction algorithms itself
Input is volumeric data or scalar field of signed distances to surfacee

Algorithm constructs approximation of the zero-set of the scalar field
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Assumptions

m ... on data noise (measurement error)

The samples X = {x4, X, ..., X,,} are 6-noisy, i.e., each sample is no farther than
o away from its true position

Features of size less < 6 cannot be recovered reliably

m ... on sampling density

p-dense: within each sphere centered at a point on surface M having radius p, at
least one sample is drawn

This assumption is necessary in order to distinguish between holes in surface
(boundary) and holes in the sampling

If there is an empty sphere with radius (6 + p) embedded in the sampling, then it
is a hole in the model




Overview of Hoppe's approach

Input: set X of unorganized 3D points (o-noisy; p-dense) sampled
near surface M

Algorithm in two stages

1. Obtain an implicit function f: D — R, where D c R3, is a region near
true surface M, and f(p) estimates the signed distance from p to M

. The zero-set Z(f) of fis an estimate of M. A contouring or marching-
cube algorithm approximates Z(f) by a triangle mesh

Output: a connected, consistently oriented 2-manifold triangle mesh

A general paradigm: implicit function f can be obtained in various
ways, Hoppe paper uses a set of approximate tangent planes




Learning of implicit/signed distance functions

m Generates surfaces with best visual quality so far

Learning Implicit Fields for Generative Shape Modeling
Zhigin Chen, Hao Zhang

(Submitted on 6 Dec 2018 (v1), last revised 5 Apr 2019 (this version, v3))

Occupancy Networks: Learning 3D Reconstruction in Function Space

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, Andreas Geiger
(Submitted on 10 Dec 2018)

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, Steven Lovegrove
(Submitted on 16 Jan 2019)

Deep Level Sets: Implicit Surface Representations for 3D Shape Inference

Mateusz Michalkiewicz, Jhony K. Pontes, Dominic Jack, Mahsa Baktashmotlagh, Anders Eriksson
(Submitted on 21 Jan 2019)

Awesome implicit neural representations:
https://github.com/vsitzmann/awesome-implicit-representations




Signed distance function (SDF)

Distance from a point p to a surface M is the
distance from p to a closest point on M

Sign depends on which side of M point p lies

Since M is unknown, it is approximated by a set of oriented
tangent planes — one per data point

Tangent plane for x; is defined by a center o, and a unit normal n;




Computing SDF, given tangent planes

m Determine region D close to surface M
m If p € D, the signed distance from p to M is a projection

f(p)=(P—0;) N,

where|o; is the tangent plane center that is closest to p

m If the shortest distance from a point p to the point set X'is > (o + p), then p
cannot be on the surface M

Otherwise, the sphere centered at p with radius 6 + p must contain a point from
X, since the samples are &-noisy and p-dense

p is possibly near a hole on the surface — f(p) is undefined

The remaining set of p define D




Tangent plane estimation — key!

How to define a tangent plane associated with a sample x;?

Define: Nbr(x;, k) = the set of k nearest neighbors (kNN) of a data
point x;, where k is a user input value

Center o; is the centroid of Nbr(x;, k)
Normal n; is determined by principal component analysis (PCA)

The oriented plane passing through o; having normal +/— n; provides
the least squares best fit to points in Nbr(x;, k)




PCA: Linear dimensionality reduction

m Linearly map a set of m-dimensional vectors {a,, ..., a,}, to an k-
dimensional subspace, k < m, so as to minimize the
approximation error in the least square sense

Projection matrix




Principal component analysis (PCA)

Project data points a; onto the leading k eigenvectors (for the k largest
eigenvalues) of the covariance matrix X for the original data set a

t=(a-at’)(a-a1")" =3 ,(a,—a)-(aj—a)'e R"*"
where a is the (uniform) mean of data points in a.

. : . = = / p
Eigenvectors: orthogonal and major modes of variations :%;95”00
(o}
A k-dimensional embedding is obtained by 00 %9 °©
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k= Ew'a,

where E ) € R ™ ¥ has k columns of
leading eigenvectors of X. E(k)T




PCA

m Project data points a; onto the leading k eigenvectors (for the k largest
eigenvalues) of the covariance matrix X for the original data set a

t=(a-at’)(a-a1")" =3 ,(a,—a) (a;—a)'e R™*"

where a is the (uniform) mean of data points in a.




Normal of the tangent plane

Covariance matrix X of 3D points in Nbr(x;, k) is a symmetric (positive
semi-definite) 3 x 3 matrix

The normal chosen for Nbr(x;, k) is +/— of the eigenvector of X
corresponding to the smallest eigenvalue of X

The 2-dimensional subspace, i.e., the plane, is spanned by the other
two eigenvectors

The exact sign of the normal is chosen so that nearby tangent planes
are consistently oriented




Derivation of PCA (aside)

Given a set of 3D points x4, ..., X, find a best fitting plane (o, n) in
the least squares sense, where o is a point on the plane and n is
the unit plane normal

The minimization problem: ming[(x"_oy s i =T
Use Lagrange Multiplier: [ F(O’W“):i:[(xf‘ay'”]2‘/1(”%‘1)
We assume that n = (n,, n,, n,)" # 0.

Differentiate F with respect to o, we have

Differentiate F with respect to n,, n,, n, and then combine into matrix

form, we have p=m
{Z(xl. —0)(x; —O)T:|'7l = An




Derivation of PCA (aside)

{Zk:(xl. —o)(x, — O)T:| ‘n=An

m So the normal n is an eigenvector of the covariance matrix and
there are three local minima corresponding to three eigenvectors

m Alternatively, the minimization problem is really

k
min ) [(x, —0)" -n]’ =n"Zn, subjectto n'n=1
i=1

m By Courant-Fischer Theorem, this is just an eigenvalue problem




Consistent normal orientation

m A harder part of the algorithm — it tells topological information

m One can model it as a global graph optimization problem

One node N; per tangent plane

Two nodes connected if the corresponding centers are sufficiently
close (where consistent orientation is enforced)

Cost of edge (N;, N)) is n; - n; (maximum if coplanar)
Problem: Find orientation to maximize the total cost in graph

m But this optimization problem is NP-hard (i.e., its decision version
iIs NP-complete)




Approximate solution

m First, build a Riemannian graph on tangent plane centers

Riemannian graph: encodes the geometric proximity of the tangent
plane centers

Riemannian graph is built upon the Euclidean minimum spanning
tree (EMST) — connected, tends to connect near neighbors, but there
are not enough edges

Add an edge (N;, N) to EMST if o, is one of the k closest neighbors of
O; or vice versa




Recall: EMST

m Given a set of points L, an EMST is a spanning tree of L with the
minimum total cost (edge cost measured by Euclidean distance)

m Can be obtained via Kruskal’s minimum spanning tree algorithm

Conceptually consider complete graph on L with Euclidean distances as
edge weights

Greedily add shortest edges that do not form a cycle

Stop when no edges can be added any more
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Orientation propagation

To start propagation, choose orientation for an initial plane

Propagate this orientation to its nearby planes by traversing the
Riemannian graph

Traversal order is important

A heuristic: propagate along low curvature
directions —

favor propagation from plane j to j if they are
almost parallel

less likely to be a mistake




Algorithm

Assign weight (1 — |n; - nj) to edge (N;, N))

Propagate along edges of minimum spanning tree of the resulting
graph (depth-first search)

How to propagate from n; to next plane j ?
Ifn;-n;<0, nj=—n;
How to choose an initial orientation?

Normal of plane whose center has largest z value is forced to point to
+z direction




Result

MST of normal variation graph with Oriented tangent planes as shaded
edge costs colored triangles




Recall SDF

f(p) is signed distance from p to “closest tangent plane”

Since sampling is 6-noisy and p-dense, if f(p) > o0 + p, then p
cannot be on the surface M

— f(p) is undefined in this case

Otherwise, the signed distance from p to M is a projection
f(p)=(P—0;) N,

where 0, is the tangent plane center that is closest to p

Why is f(p) not the closest distance from p to any tangent plane?




Contour tracing

Given the set of oriented tangent planes, SDF from points to
these planes can be computed

Next, need to extract the iso-surface corresponding to the zero-

set of the signed distance function

This can be done using a Marching Cubes (contour tracing)
algorithm or one of its variants




Preparation for cubes marching

Divide 3D space into cubical grids
Sample signed distance values at cube vertices

Only choose cubes that intersect the
zero iso-surface for efficiency

Size of cube d = 6 + p, why?
= if d>> 6+ p, may fill holes or join boundaries

= if dtoo small, complexity too high

No intersection between zero-surface
and cube if a vertex has undefined f(p)




Marching cubes algorithm

m Input: a scalar field sampled over the vertices of a cubical grid

m  Qutput: a set of triangles approximating the zero iso-surface of the
scalar field

Basic idea:
Process (march) cubes one at a time

Look at scalar values at vertices to decide how the iso-surface
intersects the cube

Generate triangles reflecting these intersections




2D case: Iso-contouring

m Inside iso-curve =< and iso-value = —
m Outside iso-curve => and iso-value = +
= How many topologically different cases are there?
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2D case: Iso-contouring

m Inside iso-curve =< and iso-value = —
m Outside iso-curve => and iso-value = +
= How many topologically different casesare there?
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|Iso-contouring algorithm sketch

Divide-and-conquer

1.

2.

Look at (march) one cell at a time

Compare the values at 4 corners
with iso-value

Linear interpolate along edges for
intersection points

Connect interpolated points
together




Marching cubes

Generalize iso-contour algorithm to 3D
March cubes one at a time
Linear interpolation again

There are more cases:
Total of 28 = 256 cases

Reduce to 15 topological cases relying
on value and rotational symmetry




Improvements

m Exploit spatial coherence
= e.g., for an interior cube, only three new

linear interpolations are needed, if cubes
are visited in scan-line order

m Need to find efficient ways for cube traversal
= Typically, roughly n? cubes intersect an iso-surface in n® cube grid

= e.g., can use an octree to skip empty regions — a great deal of research
along this line




The ambiguity problem

m Certain marching cube cases have more than one possible
triangulations — may create a hole mistakenly

Inside

Outside




Fixing the ambiguity problem

One consistent way to do it

There is another
opposite case:

‘ Match!!! / keep case 3 and

N change case 6 to
Eﬂ Case3B BA

b

+

Need to come up with these consistent triangulations




Ambiguous faces

m A face with two opposite vertices having the same sign

\\
“

m How to resolve this ambiguity? — use the asymptotic decider
— somewhat complex and adds cases to
original marching cubes




Asymptotic decider: rough idea

m Need to examine iso-values inside the face

m Inside values are unknown, approximate via bi-linear interpolation




Summary of Hoppe’s approach

Surface reconstruction from unorganized points through iso-surface
extraction over a signed distance field computed with respect to a
set of oriented tangent planes approximating the surface

Space subdivision helps speed up algorithm (empty cube skipping)
Constructed surface approximates point cloud
No theoretical guarantee that the surface is correct

No mechanism for feature preservation




Unreliability of PCA

m Thick point cloud — need thinning
= Non-uniform point distribution

m Close-by surface sheets




New propagation cost (aside)

m Again, the close-by surface sheets problem
m Possible solution: also look at the propagation direction

m  Sharp feature detection: should prevent propagation there

, Dan Li, Hao Zhang, , and , "Consolidation
of Unorganized Point Clouds for Surface Reconstruction," ACM Trans. on
Graphics (Proceeding of SIGGRAPH Asia 2009), Article 176.

58



http://www.cs.ubc.ca/~hhzhiyan/
http://www.cs.ubc.ca/~ascher/
http://www.cs.tau.ac.il/~dcor/

New propagation cost (aside)

max, sc{1,2} ||[7rs — Ors||

Di; =1—|(vi,v;)|- 1+ ||z — x|
() J

4)
Note that D;; € [0, 1]; it combines Euclidean distance (the de-
nominator), angular distance |(v;,v;)|, and a third term d;; =

max, sc{1,2} ||Mrs —0rs||, which is designed to weigh in propaga-
tion direction.

, Dan Li, Hao Zhang, , and , "Consolidation
of Unorganized Point Clouds for Surface Reconstruction," ACM Trans. on
Graphics (Proceeding of SIGGRAPH Asia 2009), Article 176.
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Other classical approaches

Voronoi-based with theoretical guarantee — by N. Amenta et al., “A New
Voronoi-based Surface Reconstruction Algorithm,” SIGGRAPH 98

o-shape based approaches — [Bajaj, Bernardini 95]

Deform-to-fit with energy minimization (e.g., inflating a balloon in the object)
— [Terzopoulos, Witkin, and Kass 88 & 91, Miller 91]

Use of radial basis functions — [Carr et al. 01, Iske 02]
Use of Poisson reconstruction — [Kazhdan et al. 06]

Definition of point set surfaces, e.g., MLS = Moving Least Squares — [Levin
et al. 01, Alexa et al. 02]




From MC to NMC

m Use machine learning to improve iso-surfacing

(a) Our cube tessellations
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Neural Marching Cubes (NMC) — next week

Neural Marching Cubes

ZHIQIN CHEN, Simon Fraser University, Canada
HAO ZHANG, Simon Fraser University, Canada
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(c) Trilinear interpolant (f) Ground truth




