Neural Network Basics and
Representation Learning for 3D Shapes

Richard (Hao) Zhang
CMPT 464/764:. Geometric Modeling in Computer Graphics

Lecture 7

Acknowledgment: some images taken from Michael Bronstein’s GDL slides; some from Stanford UFLDL Tutorial




Assumed background and level of coverage

* Not a machine learning class, on "need-to-know” basis
* High-level coverage, with some key basics

* WIll not assume much past ML experience, if at all

* Focus more on representation learning of 3D shapes

* Focus more on generative models, what graphics is about



What sort of learning are we talking about?

* Try to mimic or simulate how our brain functions
« Neurons as elementary computational units

« Use of artificial neural networks, which have a long history
tracing back to at least early 1990’s

* Most machine learning or deep learning that people talk
about today utilize neural networks

* Deep learning uses deep neural networks



Neural network basics

* Let us start with a single neuron to model a perceptron,
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Activation function

* Desirable properties:

Nonlinearity: ensures
universal approximation

Differentiability
Monotonicity

Etc.
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Multi-Layer Perceptron (MLP)

» A feed-forward network: no loops or cycles
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“Train” a Network
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Determine the weight and biases so that the network delivers the assigned job



Loss function

A function quantizing the discrepancies between the
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Like throwing a darts, knowing how far it is from the center (the loss) helps you (the

network) tune your force (weight and bias)
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X1

Computing the network weights .

_>hw,b(x)
* Using back-propagation and gradient decent +1>

« Given training pairs {(x0, yM}, i=1,...,m, optimize weights W, b to
minimize
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See: http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

http://neuralnetworksanddeeplearning.com/chap?2.html



http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
http://neuralnetworksanddeeplearning.com/chap2.html

Beyond supervised learning

With the “training pairs”, we have supervised learning

« The input-output pairs serve as training or ground truth (GT) data

« Optimize neural network weights to minimize loss against target outputs
Unsupervised learning

« Still optimize neural network weights to minimize some loss

« But loss definition does not need target or GT data: can “self-supervise”

Weakly supervised learning, e.g., one-shot learning

Semi-supervised learning, e.g., active learning
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Autoencoder for unsupervised learning

* Network learns to reconstruct the input: learn identity
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Autoencoder for unsupervised learning

* Network learns to reconstruct the input: learn identity

* By limiting the number of hidden
units, it is forced to learn a
compressed representation

* Representation learning

* Dimensionality reduction

12
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What is deep learning?

« Use of large and deep (many layers) neural networks

« Many hidden layers and many weights: often deep and wide

Why deep learning
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Amount of data

How do data science techniques scale with amount of data?

Important Property of Neural Networks
Results get better with
more data +

bigger models +
more computation

(Better algorithms, new insights and improved
techniques always help, too!)

Results Get Better With More Data, Larger Models, More Compute
Slide by Jeff Dean, All Rights Reserved.
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Convolutional neural network (CNN)

A CNN designed for object classification from images
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Convolutional neural network (CNN)

A CNN designed for object classification from images
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Convolution: a “running” average
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Pooling: summarization to reduce spatial res
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Volumetric convolution: 3D CNN

« Straightforward extension
from image convolution

 Processes volumetric data,
e.g., a 3D shape, or multi-
channel image data

Volumetric Occupancy Grid
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Other variants of convolution

1x1 convolution: reducing
depth/channel resolution
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Other variants of convolution

Deconvolution: upsampling

1x1 convolution: reducing
depth/channel resolution
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Other variants of convolution

Dilated convolution

Deconvolution: upsampling

1x1 convolution: reducing
depth/channel resolution
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Other variants of convolution

Deconvolution: upsampling

1x1 convolution: reducing
depth/channel resolution

Dilated convolution
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Hand-crafted features vs. learned features

 Hand-crafted: e.qg., total curvature, normal distance, etc.

* CNNs start with raw images and perform seemingly
“uneducated” operations ...

 |[earned features are
reflected in network
welights: sensitivity or
activation w.r.t. certain AW,
patterns in the images LS

Typical features learned by a CNN becoming increasingly complex
at deeper layers 23



Some key questions about CNNs/DNNs

* How to design the network architecture?

 From feature hand-crafting to hand-crafting network architecture

24



Some key questions about CNNs/DNNs

* How to design the network architecture?

 From feature hand-crafting to hand-crafting network architecture

 How to design networks that generalize well to new data?

* Avoid overfitting?
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Some key questions about CNNs/DNNs

* How to design the network architecture?

 From feature hand-crafting to hand-crafting network architecture
 How to design networks that generalize well to new data?
* Avoid overfitting?
 How to ensure there Is enough data?

« Going to weak supervision or data augmentation
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Some key questions about CNNs/DNNs

* How to design the network architecture?

 From feature hand-crafting to hand-crafting network architecture
 How to design networks that generalize well to new data?
* Avoid overfitting?
 How to ensure there Is enough data?

« Going to weak supervision or data augmentation

* How to improve training efficiency?
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Some key questions about CNNs/DNNs

* How to design the network architecture?
 From feature hand-crafting to hand-crafting network architecture

 How to design networks that generalize well to new data?
* Avoid overfitting?

 How to ensure there Is enough data?
« Going to weak supervision or data augmentation

* How to improve training efficiency?

* Interpretability or explainability of the networks

28



Geometric deep learning

« Learn to discriminate or generate geometric data
* Apply deep learning to 3D data

« Can we replicate success of generative DNNs for images?

29



Remarkable progress on image generation

* Progressive GAN (Generative Adversarial Network) [Nvidia, 2016/17]
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Remarkable progress on image generation

. Progresswe GAN (Generative Adversarial Network) [Nvidia, 2016/17]

400 x 267 image resolution, using class conditionals

31



State of the art for 3D shape generation

There are some unique challenges to training deep neural networks
(DNNSs) for 3D shape generation ...




Unique challenge #1: representation

* Unlike images or speech, there is no universally accepted
representation or encoding for 3D shapes
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Unique challenge #1: representation

* Unlike Images or speech, there is no universally accepted
representation or encoding for 3D shapes

« Alternatives: low-level representations

Mesh: a set of Volume: a grid of voxels Point cloud: a set of points34
triangles



Unique challenge #1: representation

* Many other representations

-+ DY | e

Multi-view images
in MVCNN [Su et al. 2015]

Procedural: e.g., CSGrep  Structural: a set of parts
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[Su et al. 2015]

DNN examples: multi-view CNN (MVCNN)

* Reuse standard components of image-based CNNs

* Not geometric; designed for classification not generation

bathtub
bed
chair
desk

CNN, [ dresser

D[“D:'

toilet—

3D shape model

rendered with 2D rendered our multi-view CNN architecture e
different virtual cameras images predictions 36

output class



3D ShapeNet: voxel representations

« Straightforward generation of image CNNs, for classification
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PointNet

[Qi et al. 2017]

* First transform each 3D point into a high(1,024)-D feature.

* Then aggregate features into a signature for classification

* The max pooling ensures permutation invariance
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MeShCNN [Hanocka et al. 2019]

* Direct conv processing on irregular mesh connectivity
 Mesh edges act as pixels in an image
* Mesh pooling reduces mesh resolution via edge collapse

Convolve edge features  Mesh pooling via edge collapse

39



MeShCNN [Hanocka et al. 2019]

* Direct conv processing on irregular mesh connectivity
 Mesh edges act as pixels in an image

* Mesh pooling reduces mesh resolution via edge collapse
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Most networks developed for these reps, in particular, those
using convolutional neural networks (CNNs), are designed for
discriminative analysis and recognition, not generation.
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Unique challenge #2: 3D data challenge

» Acquisition of and interaction with 3D contents are hard

GO 8[6 chair “ Moderate SafeSearch is on

Web Images

Any size e 3D Warehouse Sign In chair ﬂ
:\;u;:ium 24;951 RESU|tS 25K 3D ChaIrS Sort by Relevance Go
?I)Il nl e, .

$|ra kp nd white - b t

-«  Still lack of “BIG 3D Data” to train (deep) machine .

Photo M|

learning algorithms for many analysis and synthesis
tasks.




Unique challenge #3: affordance/functionality

« 3D objects or designs are meant to be used in real life

o Not enough to just have the right parts

42



Unique challenge #3: affordance/functionality

« 3D objects or designs are meant to be used in real life
o Not enough to just have the right parts

> Not enough to just “look right” as an image or rendering

43



Ultimate goal of 3D shape generation

* We live in 3D world to interact with our surroundings

o We do not just see and observe, we use and we act ...

44



Ultimate goal of 3D shape generation

* We live in 3D world to interact with our surroundings

o We do not just see and observe, we use and we act ...

* Our understanding does not stop at what things are

« Ultimately, the understanding is about

now things are

now to use them

That is functionality!
3D shapes need to function properly

45



Early work: theory of affordance (aside)

* Affordance Is what the environment offers .
or affords the individual '

* It presents opportunities for actions afforded
by a specific object or environment

« Agents = humans/hands

J. J. Gibson, “The Ecological
Approach to Visual Perception”,
1979

46



Affordance analysis in vision (aside)

CVPR 2011

Helmut Grabner!

! Computer Vision Laboratory
ETH Zurich
{grabner,gall,vangool}@vision.ee.ethz.ch

Abstract

Many object classes are primarily defined by their func-
tions. However, this fact has been left largely unexploited
by visual object categorization or detection systems. We
propose a method to learn an affordance detector. It iden-
tifies locations in the 3d space which “support” the par-
ticular function. Our novel approach “imagines” an actor
performing an action typical for the target object class, in-
stead of relying purely on the visual object appearance. So,
function is handled as a cue compl ry to appearance,
rather than being a consideration after appearance-based
detection. Experimental results are given for the functional
category “sitting”. Such affordance is tested on a 3d rep-
resentation of the scene, as can be realistically obtained
through SfM or depth cameras. In contrast to appearance-
based object detectors, affordance detection requires only
very few training examples and generalizes very well to
other sittable objects like benches or sofas when trained on
a few chairs.

1. Introduction

“An object is first identified as having important func-
tional relations, [...] perceptual analysis is derived of the
functional concept [...].”

Nelson, 1974, [17]

“Affordances relate the utility of things, events, and
places to the needs of animals and their actions in fulfill-
ing them [...]. Affordances themselves are perceived and, in

fact, are the essence of what we perceive.”
Gibson, 1982, [8, p. 60]

“There’s little we can find in common to all chairs — ex-

for their intended use.”
cept fo ended use Minsky, 1986, [16, p. 123]
“[...] objects like coffee cups are artifacts that were cre-
ated to fulfill a function. The function of an object plays a
critical role in processing that object [... for] categorization

and naming.”
Carlson-Radvansky et al., 1999, [4]

Juergen Gall*

What Makes a Chair a Chair?

Luc Van Gool'?

*ESAT - PSI/IBBT
K.U. Leuven
luc.vangool@esat .kuleuven.be

o \"% e
Figure 1. The “chair-challenge” by I. and H. Bulthoff [3] (reprint
with the author’s permission).

These quotes emphasize that functional properties or af-
fordances! are essential for forming concepts and learning
object categories. Experiments (e.g. [18, 4]) have demon-
strated that both appearance and function are strong cues
for learning by infants. Initially they attend only to the
form of an object. Later they use form and function and
finally (by the age of 18 months) they attend to the relation-
ships between form and function. Furthermore, Booth and
Waxman [2] have identified two salient cues that facilitate
categorization in infancy, namely (i) object functions and
(ii) object names. Moreover, names of objects most often
evolve on the basis of function?.

Whereas all this is well known for a long time, it has
been left mostly unused for object detection in computer
vision. Taking a look at the results of the recent Pascal
VOC Challenge [5], the performance still strongly depends

'“Affordance: A situation where an object’s sensory characteristics in-
tuitively imply its functionality and use. [...] A chair, by its size, its curva-
ture, its balance, and its position, suggests sitting on it.”, http: //www.
usabilityfirst.com/glossary/affordance, 2010/07/28. In-
troduced in 1979 by Gibson [9, p. 127] based on the verb afford.

2When considering the evolution of a word for an object, most of
the time it is based on its function. For example the word “chair”: PIE
base *sed- (to sit) — Latin sedentarius (sitting, remaining in one place)
— sedentary (meaning “not in the habit of exercise”) — cathedral —
chair. http://www.etymonline.com, 2010/10/02.

 Fit canonical human poses into 3D
scenes to detect sitting affordances

47



Affordance analysis in vision (aside)

CVPR 2011

Helmut Grabner!

! Computer Vision Laboratory
ETH Zurich
{grabner,gall,vangool}@vision.ee.ethz.ch

Abstract

Many object classes are primarily defined by their func-
tions. However, this fact has been left largely unexploited
by visual object categorization or detection systems. We
propose a method to learn an affordance detector. It iden-
tifies locations in the 3d space which “support” the par-
ticular function. Our novel approach “imagines” an actor
performing an action typical for the target object class, in-
stead of relying purely on the visual object appearance. So,
function is handled as a cue compl ry to appearance,
rather than being a consideration after appearance-based
detection. Experimental results are given for the functional
category “sitting”. Such affordance is tested on a 3d rep-
resentation of the scene, as can be realistically obtained
through SfM or depth cameras. In contrast to appearance-
based object detectors, affordance detection requires only
very few training examples and generalizes very well to
other sittable objects like benches or sofas when trained on
a few chairs.

Llntroduction

Juergen Gall

“An object is first identified as having important func-
tional relations, [...] perceptual analysis is derived of the

functional concept [...].”
Nelson, 1974, [17]

places to the needs of animals and their actions in fulfill-
ing them [...]. Affordances themselves are perceived and, in

fact, are the essence of what we perceive.”
Gibson, 1982, [8, p. 60]

“There’s little we can find in common to all chairs — ex-
cept for their intended use.” "
Minsky, 1986, [16, p. 123]

“[...] objects like coffee cups are artifacts that were cre-
ated to fulfill a function. The function of an object plays a
critical role in processing that object [... for] categorization

and naming.”
Carlson-Radvansky et al., 1999, [4]

What Makes a Chair a Chair?

Luc Van Gool'?

*ESAT - PSI/IBBT
K.U. Leuven
luc.vangool@esat .kuleuven.be

earning by infants. Initially they attend only to
Orm of an object. Later they use form and fuggs
finally (by the age of 18 months) they at the relation-
ships between form and functi rthermore, Booth and
Waxman [2] have ideggié o salient cues that facilitate
categorizationg ancy, namely (i) object functions and
(ii) ghéee®names. Moreover, names of objects most often

olve on the basis of function?.

Whereas all this is well known for a long time, it has
been left mostly unused for object detection in computer
vision. Taking a look at the results of the recent Pascal
VOC Challenge [5], the performance still strongly depends

'“Affordance: A situation where an object’s sensory characteristics in-
tuitively imply its functionality and use. [...] A chair, by its size, its curva-
ture, its balance, and its position, suggests sitting on it.”, http: //www.
usabilityfirst.com/glossary/affordance, 2010/07/28. In-
troduced in 1979 by Gibson [9, p. 127] based on the verb afford.

2When considering the evolution of a word for an object, most of
the time it is based on its function. For example the word “chair”: PIE
base *sed- (to sit) — Latin sedentarius (sitting, remaining in one place)
— sedentary (meaning “not in the habit of exercise”) — cathedral —
chair. http: //www.etymonline.com, 2010/10/02.

 Fit canonical human poses into 3D
scenes to detect sitting affordances

“An object is first identified as having important
functional relations, [...], perceptual analysis
is derived of the functional concept [...]

Nelson [1974]




Affordance analysis in vision (aside)
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Figure 1. The “chair-challenge” by I. and H. Bulthoff [3] #€print
with the author’s permission).

These quotes emphasize that functionalfroperties or af-
fordances' are essential for forming cgsfepts and learning
object categories. Experiments (e. 8, 4]) have demon-
strated that both appearance andgfuinction are strong cues
for learning by infants. Initigfly they attend only to the
form of an object. Later use form and function and
finally (by the age of 18 pfbnths) they attend to the relation-
ships between form function. Furthermore, Booth and
Waxman [2] have jentified two salient cues that facili
categorization igfinfancy, namely (i) object functjge® and
(ii) object ngfes. Moreover, names of obje ost often
evolve on#fe basis of function.

Whesas all this is well know r a long time, it has
beegdleft mostly unused for g#fect detection in computer
vjfion. Taking a look e results of the recent Pascal

OC Challenge [ e performance still strongly depends

Y“Afford, I~ A situation where an object’s sensory characteristics in-
tuitively#Mply its functionality and use. [...] A chair, by its size, its curva-
1 s balance, and its position, suggests sitting on it.”, http: //www.

sabilityfirst.com/glossary/affordance, 2010/07/28. In-

...] objects Tike coffee cups are artifacts that were cre-
ated to fulfill a function. The function of an object plays a
critical role in processing that object [... for] categorization

and naming.”
Carlson-Radvansky et al., 1999, [4]

duced in 1979 by Gibson [9, p. 127] based on the verb afford.

2When considering the evolution of a word for an object, most of
the time it is based on its function. For example the word “chair”: PIE
base *sed- (to sit) — Latin sedentarius (sitting, remaining in one place)
— sedentary (meaning “not in the habit of exercise”) — cathedral —
chair. http: //www.etymonline.com, 2010/10/02.

 Fit canonical human poses into 3D
scenes to detect sitting affordances

“There’s little we can find in common to all
chairs — except for their intended use.”

Minsky [1986]




How to define affordance/functionality?

* Interactions between a 3D object with other objects (the
agents) in a given scene context reflects its functionality
* Agents can be
o Humans or hands
o Other 3D objects

50



How to represent object-object interactions

IBS: Intersection Bisector Surface (to describe the interaction)
/ [Zhao et al. TOG 2014]

[Hu et al. SIGGRAPH 2015]

N \\
| 2

IR: Interaction Region (to
describe the object geometry)

J
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Before functionality ...

* Results of 3D generative NNs still visually unsatisfactory
o Low resolution and geometric/structural/topological noise

It is important to find the right shape representat|ons for training
DNNs to generate quality 3D shapes
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What is a shape?

«© shape
/SHap/

noun

1. th@ternal fo@ar appearance characteristic of someone or something@ﬁe outline Qan area
or figure.
"she liked the shape of his nose"
synonyms: form, appearance, configuration, formation, structure; More
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Shape vs. image

D

noun

shape

/SHap/

th{ ternal fo ,raar appearance characteristic of someone or somethmg@ﬁe outl
or figure.

me)an area

"she liked the shape of his nose"
synonyms: form, appearance, configuration, formation, structure; More
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Shape vs. image

«© shape
/SHap/

noun

1. theé;ternal fo@)r appearance characteristic of someone or something@ﬁe outline@an area
or figure.
"she liked the shape of his nose"
synonyms: form, appearance, configuration, formation, structure; More

* A shape Is defined/characterized by its boundary/outline
* Image boundary is artificial: it Is because we had to crop
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Shape boundary I1s about what is inside/outside

outside ¢

56



It IS not really about feature inference

outside ¢

VS. image
convolution
via CNNs

What features
are in these
boxes?
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CNNs “see” textures, humans see shapes (aside)

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 17.3%  grey fox 26.4% indri

8.2% black swan 3.3% Siamese cat 96% black swan

“ImageNet-trained CNNs are biased towards texture; Increasing shape bias

improves accuracy and robustness” [Geirhos et al. ICLR 2019]
58



To learn to generate shapes, we should ask ...

Is this point inside the shape?
O

Inside o

QOutside
O

Inside ¢

Outside
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To learn to generate shapes, we should ask ...

OL

Is this point inside the sh

Itside
O

Outside
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A typical CNN-based shape generator

Some code, e.g.,
noise or result of
AE encoding
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A typical CNN-based shape generator

deconv

——>

Some code, e.g.,
noise or result of
AE encoding
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A typical CNN-based shape generator

deconv deconv

—> | >

Some code, e.g.,
noise or result of
AE encoding
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A mapping from features to voxel values

Some code, e.g.,
noise or result of
AE encoding

fl

= mapping from some features,
e.g., image features (= pixel
intensities) via an AE encoding
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3D generative adversarial network (3D-GAN)

« 3D shape as voxels: combine volumetric CNN and GAN

» Generative network maps 200d vector to 643 volume

512x4x4x4

~@fa) | T @

256xBx8x8
128x16x16x16

64x32x32%x32

Z G(z) in 3D Voxel Space
64x64x64

3D-GAN [Wu et al. NIPS 2016]
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Shape generation results by 3D-GAN

Gun 444”””“

3D volumetric shapes generated from random latent vectors
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Let us learn the right mapping ...

flp, S) : is point p inside or outside shape S
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Let us learn the right mapping ...

flp, S) : is point p inside or outside shape S
e.g.,
flp, S) =1, if pis outside S
=0, otherwise

* This is an implicit representation: a shape is composed of
the set of all points satisfying an equation f(x) =0

» Point p can be in R3, so it is a continuous representation
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IM-NET: an implicit field generator

* Learn mapping from a 3D point (X, y, z) to inside/outside
status with respect to a 3D shape

2048

1024

912

256

Shape encoding | 4.5 131

128 Inside/outside

Qj Feature vector 1
—> —> | |— || | |-->

point coordinates

Concatenate
Copy and Concatenate
—> FC, Leaky RelLU
--—2 FC, Sigmoid ] 63



IM-NET: an implicit field generator

* Learn mapping from a 3D point (X, y, z) to inside/outside

status with respect to a 3D shape

Shape encoding

Qj Feature vector

128

s |

131

—

2048

1024

—

—

912

—

256

—

128

__*

Inside/outside

1

N,

IM-NET: traineo

on point-value pairs and learns shape boundaries

Traditional CNN-based decoders learn feature-to-voxel mappings.
The features are voxel intensity distributions inside various boxes
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CNN vs. IM-NET for shape generations

 CNN vs. implicit decoders on learning to generate A's

* Networks were trained on same letter shape A, with white
background, in different locations

Image intensity refinement Training epochs -
(a) AEenx o A A A A A A
(b) AE 1 AAA A A A A A A

Shape boundary refinement
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CNN vs. IM-NET for shape interpolation

* Networks were trained in the same way

* In-between results were generated from linearly
Interpolated latent codes between source and target

Interpolate by adjusting ~ Iterpolation .-
imageintensities()AECNNA A A A A A 'L\&\ r

VAN A A
(d)AEIMAAAAAAAAAA

Interpolate by moving
the shapes: the right
way

A A
A A
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Comparing 3D shape generation results

[Chen and Zhang, CVPR 2019]

(a) 3DGAN : (d) CNN-GAN

P A lfﬂ [T Pz A f“\ | T |

(b) PC-GAN f (e) IM-GAN (sampled at 64%) \

v s e\ %
. iy SRS,
of 3 _i,((m BN 3 ‘13‘) Nt RN

ik RN U EY 23 R o AV
. ¢ S TN LAY L8 e i e
{ By P EUR R Rty O Lk PRI

% .-‘I"‘u./‘ LOD 50 PR N W ivakoasy

R e B ey
v N | Sy o
gy NS b Sy

¥ .'.': WEATE 7 B

. Ry +

(f) IM-GAN (sampled at 256°)
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Comparing 3D shape interpolation results

[Chen and Zhang, CVPR 2019]

()3DGAN
' tr'?!i”ﬁ’%mﬂ
"g i‘ ‘9:3:_/"??""\ ,-“: ":

(b) PC- GAN

mw N

(¢) CNN-GAN

(d) IM GAN

S e
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2019: the start of neural implicits

Learning Implicit Fields for Generative Shape Modeling

Zhigin Chen, Hao Zhang
(Submitted on 6 Dec 2018 (v1), last revised 5 Apr 2019 (this version, v3))

Occupancy Networks: Learning 3D Reconstruction in Function Space

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, Andreas Geiger
(Submitted on 10 Dec 2018)

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, Steven Lovegrove

(Submitted on 16 Jan 2019)

Deep Level Sets: Implicit Surface Representations for 3D Shape Inference

Mateusz Michalkiewicz, Jhony K. Pontes, Dominic Jack, Mahsa Baktashmotlagh, Anders Eriksson
(Submitted on 21 Jan 2019)

Learning Shape Templates with Structured Implicit Functions

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T. Freeman, Thomas Funkhouser
(Submitted on 12 Apr 2019)
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