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Why smooth curves & surfaces?

n Naturally, to model smooth shapes, e.g., 

n Body of an automobile

n Shape of cartoon characters (Shrek)

n Motion curves in animation

n Compact, analytical representation

n Smoothness can often be guaranteed analytically

n Theory of smooth curves and surfaces is well-developed

[Zorin 01]
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Why smooth curves & surfaces?

n Study of smooth curves and surfaces 

n e.g., the notion of arc length, area, curvature, surface normal, 
tangents, parameterization, etc.

     forms the basis behind geometric modeling and processing using 
other primitives, 

n e.g., polygonal meshes, subdivision surfaces, point clouds

n A lot of work in discrete shape processing involves 

discretization of the theory for the continuous and the smooth



Shape = {x Î Rk | f(x) = 0}, 

e.g., for a plane, f(x) = n • (x – p), and 

for a sphere, f(x) = (x – c)2 – r2, 

n f: inside-outside function

n x is inside the shape, if f(x) < 0

n x is outside the shape, if f(x) > 0

For this to work efficiently, f should be easy to evaluate

1. Implicit function representations
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Shape = {x Î Rk | f(x) = 0}, 

What is f(x) for a bi-infinite (unbounded) cylinder with center c, 
orientation vector v, and base radius r?

Exercise: cylinder primitive
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Where are implicit reps used?

n Bresenham line drawing algorithm

n Intersections tests in ray tracing or 
collision detection

n Intermediate representation in 
surface reconstruction

n *** Evolve a surface by evolving its 
3D scalar field, governed by a level-
set — topology changes automatic

f(x) = 0

(x(t), y(t), z(t))

Conversion between implicit and 
parametric is not always easy

Evolution of a 2D curve
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Where are implicit reps used?

n Bresenham line drawing algorithm

n Intersections tests in ray tracing or 
collision detection

n Intermediate representation in 
surface reconstruction

n *** Evolve a surface by evolving its 
3D scalar field, governed by a level-
set — topology changes automatic

n In the DL era, implicit functions are 
desirable neural representations for 
3D shapes in terms visual quality [Chen & Zhang CVPR 2019]
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Rendering of an implicit form f(x) = 0

Convert to discrete forms, e.g., a mesh

n In 2D case, overlay a regular grid

n Assign signs to grid points depending on f

n f(x) < 0: x ¬ –

n f(x) > 0: x ¬ +

n Visit one cell at a time
1. Linearly interpolate along edge to determine 

point of intersection

2. Connect points depending on sign at corners

Generalization to 3D: Marching cubes (later)
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2. Parametric curves & surfaces

n 2D planar curve segment: 

(x(t), y(t)), t Î[0, 1]

n 3D space curve segment: 

(x(t), y(t), z(t)), t Î[0, 1]

n 3D surface patch: 

(x(u, v), y(u, v), z(u, v)), u, v Î[0, 1]
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Use of polynomials

n In computer graphics, we prefer parametric curves and surfaces 
defined by polynomials

n Approximation power: Can approximate any continuous function to 
any accuracy (Weierstrass’s Theorem)

n All derivatives and integrals are available (infinitely smooth) and 
easy to compute

n Compact representation

n Can offer local control for shape design with the use of piecewise 
polynomials



16

Degree of polynomials

n Degree 0 – 2: simple but not enough flexibility

n High-degree: unnecessarily complex and easy to introduce 
undesirable wiggles — most objects have a fair shape

n Most common in graphics as well as computer-aided geometric 
design (CAGD): parametric cubic curves and surfaces
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Scattered point interpolation

n Consider an interpolation problem:

What is the polynomial function here?
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High-degree polynomials 

n Consider an interpolation problem:

High-degree polynomial interpolant: smooth but not fair
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Fairness vs. smoothness

n Smoothness of curves and surfaces:

n Local property: often achieved by design

n Related to existence and continuity of various derivatives,

    e.g., 3x100 – 9x2 + … is infinitely smooth, is it “visually pleasing”?

n Fairness (often appears in CAGD literature)

n Global property: achieved by some form of energy minimization

n Related to the “energy” of a curve or surface

    e.g., 3x100 – 9x2 + … has high bending energy — not visually pleasing
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n The same interpolation problem: High-degree polynomial 
interpolant: smooth but not fair

Piece-wise cubic interpolation

Each segment is cubic

Allow many (> 4) 
constraints

Remedy: piece-wise polynomials
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Parametric cubic segment

Consider a single piece: x(t) = a3t3 + a2t2 + a1t + a0

              y(t) = b3t3 + b2t2 + b1t + b0

                                        z(t) = c3t3 + c2t2 + c1t + c0

In matrix form:

T is said to be the monomial basis
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n 1st-order derivative of (x(t), y(t)): (x’(t), y’(t)) – tangent 

n 2nd-order derivative: (x’’(t), y’’(t)) – related to curvature

n Parametric continuity of a curve (smoothness of motion):
n C0 continuous: curve is joined or connected

n C1: requires C0 & 1st-order derivative is continuous

n C2: requires C0 & C1 & 2nd-order derivative is continuous

n Cn: requires C0 & … & Cn – 1 & n-th derivative continuous

Derivatives and continuity
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Curvature of plane curve

n Extrinsic vs. intrinsic definitions
n Intrinsic curvature at a point p on a plane curve:

n Osculating circle: limit circle passing through p and its neighbors
n Unit of curvature: inverse distance

n Extrinsic curvature at p of plane curve (x(t), y(t))

1/R, where R is the radius of the osculating circle
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where θ is the turning angle 
and s is arc length
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n A single polynomial segment is always C¥ 

n But we mostly deal with piecewise polynomial curves

n Key: what happens at the joints between segments

n C0: curve segments are connected

n C1: C0 & 1st-order derivatives agree at joints

n C2: C0 & C1 & 2nd-order derivatives agree at joints, etc.

n If parametric continuity not possible to enforce, can relax to

n “Visual” smoothness: direction of tangents stays the same, but 
magnitude (speed) may change

Continuity of piecewise curves
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Geometric continuity

n geometric continuity
n G0 continuous: curve segments are connected (same as C0)

n G1: G0 & 1st-order derivatives are proportional at joints. 
n Note: 

n Proportional = same direction but may have different magnitudes 

n Weaker than C1

n G2: G1 & 2nd-order derivative proportional at joints

n Example: p(t) = (3t, t3) and q(t) = (4t+3, 2t2+4t+1) with t Î [0, 1] for 
each. Is this C0, G1, and/or C1?
p(1)=q(0)=(3,1), so G0; p’(1)=(3,3) and q’(0)=(4,4), so G1 not  C1
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Now on to curve design

n Do you say to yourself,

                        “I want to design a cubic curve a3t3 + a2t2 + a1t + a0 
with a3 = 1, a2 = –9, a1 = 4, and a0 = 21”?
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Curves with the right design constraints

n Want to design piecewise cubic polynomial curves that satisfy 
certain design constraints, e.g.,

n Curve should pass certain points

n Curve should have some given derivatives at specific points

n Curve should be smooth: G1, C1, C2, or …

n Curve must be contained in certain area, or has at most this length, etc.

n Need to use proper basis functions to facilitate the design process

n Often, the basis used identifies the curve representation
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Basis functions and control points

n Recall basis expansion: x(t) = P1b1(t) + P2b2(t) + P3b3(t) + P4b4(t) 

n Monomial basis, {1, t, t2, t3}: only one of many possible bases for 
cubic polynomials

n From a design point of view, want P1, P2, P3, and P4 to represent 
observable quantities (not so for monomial basis), e.g.,

n Position: for interpolation

n Derivatives: to control direction and smoothness, etc.

n P1, P2, P3, and P4 serve as control points

n Control points are blended by the basis functions b1, b2, b3, and b4 
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Example 1: Cubic Hermite curves

n Defined by two points (P1 and P4) and 
two tangents (R1 and R4)

n Aim: Achieve C1 or G1 continuity

n Want cubic curve x(t), t Î [0, 1], such that
x(0) = P1

x(1) = P4

x’(0) = R1

x’(1) = R4

(y and z are similar)

n Usage example: determining the 
trajectory of a ball in animation

Let us note that the 
control “points” P1, P4, 
R1, and R4 are all 
observable quantities 
and they control the 
shape of the curve

R1

R4

P4

P1
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Cubic Hermite curves

n x(t) = TA = a3t3 + a2t2 + a1t + a0, where T = [t3 t2 t 1] and    
A = [a3 a2 a1 a0]T. We want

n Hence, G = BA and thus A = B–1G
n It follows that x(t) = TA = TB–1G = HG
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Cubic Hermite curves

n How to interpret this: x(t) = TA = TB–1G = HG

n G: vector of observables or control points

n H: vector of cubic Hermite basis (blending) functions

n For any G, use H to blend four control points to get curve x(t)

n The matrix Mhermite = B–1 is really a change-of-basis matrix: changes 
the monomial basis T into the Hermite basis H

n Hermite curves are completely determined by Mhermite

]  ,2  ,32  ,132[ 23232323 tttttttttH -+-+-+-=
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The cubic Hermite matrix

n The Hermite change of basis matrix or its basis identifies the 
Hermite representation of cubic parametric curves

n Any cubic parametric curve can be specified in Hermite form
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Piecewise Hermite curves

n Can obviously enforce C1 or G1 continuity at the joints

n Each segment parameterized over [0, 1] as usual

R1

R4 = kR’1

P4 = P’1

P1

P’4

R’4
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From curves to surfaces

n Fit the simplest surface between 
four points

n Sweep a straight line and each 
point on the line traces a 
straight line

n An example of a ruled surface

n An example of tensor-product 
surfaces

n One easy way: sweep a curve whose control points also trace out 
some curves, e.g., bilinear interpolation

bilinear interpolation
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Tensor-product (TP) surfaces

n The curve to sweep:

n The resulting surface is a tensor-product surface

n Surface is controlled by the grid of control points Pij 

n Control point ai goes through a curve
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Tensor-product (TP) surfaces
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[ A0(u)  A1(u)  A2(u)  A3(u) ] B0(v)

B1(v)

B3(v)

B2(v)
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Curvature of surfaces

n Regular point on a surface

n Consider all curves lying in the surface through the point

n Point is regular if tangent vectors of all these curves lie in the same 
plane — the tangent plane

n Surface normal at regular point: normal to tangent plane

n Intersection between surface and a plane through the normal is 
called a normal section

n Principal curvatures: maximum (κ1) and minimum (κ2) 
curvatures of the normal sections
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Curvature of surfaces

n Gaussian curvature:

n Mean curvature: 

n For a regular point, the two principal (curvature) directions are 
perpendicular

n Elliptic, hyperbolic, parabolic, umbilical points

21kk

2
21 kk +

all the same?!
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Exercises

n Design a curve of your own, e.g., interpolate two end points and 
interpolate position and tangent at midpoint – compute C.O.B. matrix

n Identify the curve …

n de Casdeljau algorithm
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Primitive fitting

n Given a set of points, find the parameters of a primitive (e.g., a line or 
plane, a sphere, or a cylinder) to provide the best fitting

Image taken from Ragon Ebker
https://www.baeldung.com/cs/ransac 
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What is the best fitting?

n Least square (LSQ) fitting: find the primitive which minimizes the sum 
of squared distances from the set of points

Image taken from Ragon Ebker
https://www.baeldung.com/cs/ransac 
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Problem with LSQ

n Outliers!

Image taken from Ragon Ebker
https://www.baeldung.com/cs/ransac 
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Problem with LSQ

n Even very few outliers can cause problems

Image taken from Robert Collins
https://www.cse.psu.edu/~rtc12/CSE486/lecture15.pdf
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Problem with LSQ

n Even very few outliers can cause problems

Image taken from Robert Collins
https://www.cse.psu.edu/~rtc12/CSE486/lecture15.pdf
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A good solution: RANSAC

n RANSAC = RANdom SAmple Consensus

n Key idea: classify points into inliers, outliers, and eliminate the latter

n The model/primitive is only fit to the inliers

Image taken from Robert Collins
https://www.cse.psu.edu/~rtc12/CSE486/lecture15.pdf
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RANSAC

n Key idea: classify points into inliers, outliers, and eliminate the latter

n The model/primitive is only fit to the inliers\

n RANSAC = RANdom SAmple Consensus
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