3D Shape Representations I:

Implicit Functions, Parametric Reps, and Fitting

Richard (Hao) Zhang

CMPT 464/764: Geometric Modeling in Computer Graphics

an manantin antin an a contain market area

Lecture 3

- Implicit reps
- Parametric reps

• Smooth curves and surfaces

Symmetry hierarchies

- Implicit reps
- Parametric rep
- Meshes (subdi
- Point clouds
- Volumes
- Projective reps
- Structured reps

Parts + relations = structures Encompasses all low-level reps

Today

Implicit reps

- Parametric reps
- Meshes (subdivision)
- Point clouds
- Volumes
- Projective reps
- Structured reps

- Smooth curves and surfaces

Discrete representations

Parts + relations = structures Encompasses all low-level reps

Why smooth curves & surfaces?

- Naturally, to model smooth shapes, e.g.,
 - Body of an automobile
 - Shape of cartoon characters (Shrek)
 - Motion curves in animation
- Compact, analytical representation

[Zorin 01]

- Smoothness can often be guaranteed analytically
- Theory of smooth curves and surfaces is well-developed

Why smooth curves & surfaces?

Study of smooth curves and surfaces

 e.g., the notion of arc length, area, curvature, surface normal, tangents, parameterization, etc.

forms the basis behind geometric modeling and processing using other primitives,

- e.g., polygonal meshes, subdivision surfaces, point clouds
- A lot of work in discrete shape processing involves

discretization of the theory for the continuous and the smooth

1. Implicit function representations

Shape = {x ∈ R^k | f(x) = 0},
e.g., for a plane, f(x) = n • (x − p), and
for a sphere, f(x) = (x − c)² − r²,

f: inside-outside function

- **x** is inside the shape, if $f(\mathbf{x}) < 0$
- **x** is outside the shape, if $f(\mathbf{x}) > 0$

For this to work efficiently, f should be easy to evaluate

Exercise: cylinder primitive

Shape = { $\mathbf{x} \in \mathbf{R}^k \mid f(\mathbf{x}) = 0$ },

What is f(**x**) for a bi-infinite (unbounded) cylinder with center **c**, orientation vector **v**, and base radius r?

Where are implicit reps used?

- Bresenham line drawing algorithm
- Intersections tests in ray tracing or collision detection
- Intermediate representation in surface reconstruction
- Evolve a surface by evolving its 3D scalar field, governed by a levelset — topology changes automatic

Conversion between implicit and parametric is not always easy

Evolution of a 2D curve

Where are implicit reps used?

Bresenham line drawing algorithn

 Intersections tests in ray tracing o collision detection

surface reconstruction

 *** Evolve a surface by evolving its
 3D scalar field, governed by a levelset — topology changes automatic

 In the DL era, implicit functions are desirable neural representations for 3D shapes in terms visual quality

Figure 1: Shapes generated by our implicit field generative adversarial network (IM-GAN), which was trained on 64^3 or 128^3 voxelized shapes. The output shapes are sampled at 512^3 resolution and rendered via marching cubes.

[Chen & Zhang CVPR 2019]

Rendering of an implicit form f(x) = 0

Convert to discrete forms, e.g., a mesh

- In 2D case, overlay a regular grid
- Assign signs to grid points depending on f
 - $f(\mathbf{x}) < 0: \mathbf{x} \leftarrow -$
 - $f(\mathbf{x}) > 0: \mathbf{x} \leftarrow \mathbf{+}$
- Visit one cell at a time

- Linearly interpolate along edge to determine point of intersection
- 2. Connect points depending on sign at corners

Generalization to 3D: Marching cubes (later)

2. Parametric curves & surfaces

- 2D planar curve segment:
 (*x*(*t*), *y*(*t*)), *t* ∈[0, 1]
- 3D space curve segment:
 (x(t), y(t), z(t)), t ∈ [0, 1]
- 3D surface patch:

 $(x(u, v), y(u, v), z(u, v)), u, v \in [0, 1]$

Use of polynomials

- In computer graphics, we prefer parametric curves and surfaces defined by polynomials
 - Approximation power: Can approximate any continuous function to any accuracy (Weierstrass's Theorem)
 - All derivatives and integrals are available (infinitely smooth) and easy to compute
 - Compact representation
 - Can offer local control for shape design with the use of piecewise polynomials

Degree of polynomials

■ Degree 0 – 2: simple but not enough flexibility

- High-degree: unnecessarily complex and easy to introduce undesirable wiggles — most objects have a fair shape
- Most common in graphics as well as computer-aided geometric design (CAGD): parametric cubic curves and surfaces

Scattered point interpolation

 \bigcirc

•

igodol

• Consider an interpolation problem:

 \bigcirc

What is the polynomial function here?

 \bigcirc

 \bigcirc

 \bigcirc

High-degree polynomials

Consider an interpolation problem:

High-degree polynomial interpolant: **smooth but not fair**

Fairness vs. smoothness

- Smoothness of curves and surfaces:
 - Local property: often achieved by design
 - Related to existence and continuity of various derivatives,
 - e.g., $3x^{100} 9x^2 + \dots$ is infinitely smooth, is it "visually pleasing"?
- Fairness (often appears in CAGD literature)
 - Global property: achieved by some form of energy minimization
 - Related to the "energy" of a curve or surface

e.g., $3x^{100} - 9x^2 + \dots$ has high bending energy — not visually pleasing

Remedy: piece-wise polynomials

Parametric cubic segment

Consider a single piece: $x(t) = a_3t^3 + a_2t^2 + a_1t + a_0$ $y(t) = b_3t^3 + b_2t^2 + b_1t + b_0$ $z(t) = c_3t^3 + c_2t^2 + c_1t + c_0$

In matrix form:

$$x(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} a_3 \\ a_2 \\ a_1 \\ a_0 \end{bmatrix} \text{ or } x(t) = TA$$

T is said to be the **monomial basis**

Derivatives and continuity

and a subset of the second of the second state and a second state of the second state of the second state of the

• 1st-order derivative of (x(t), y(t)): (x'(t), y'(t)) - tangent

- Parametric continuity of a curve (smoothness of motion):
 - C⁰ continuous: curve is joined or connected
 - C¹: requires C⁰ & 1st-order derivative is continuous
 - **C**²: requires **C**⁰ & **C**¹ & 2nd-order derivative is continuous
 - **C**^{*n*}: requires $\mathbf{C}^0 \otimes \ldots \otimes \mathbf{C}^{n-1} \otimes n$ -th derivative continuous

Curvature of plane curve

- Extrinsic vs. intrinsic definitions
- Intrinsic curvature at a point p on a plane curve:

1/R, where R is the radius of the osculating circle

- Osculating circle: limit circle passing through p and its neighbors
- Unit of curvature: inverse distance
- Extrinsic curvature at p of plane curve (x(t), y(t))

$$\kappa = \frac{d\theta}{ds} = \frac{x' y'' - y' x''}{(x'^2 + y'^2)^{3/2}} = 1/R$$

where θ is the turning angle and *s* is **arc length**

Continuity of piecewise curves

- A single polynomial segment is always C[∞]
- But we mostly deal with piecewise polynomial curves
- Key: what happens at the joints between segments
 - **C**⁰: curve segments are connected
 - C¹: C⁰ & 1st-order derivatives agree at joints
 - **C**²: **C**⁰ & **C**¹ & 2nd-order derivatives agree at joints, etc.
- If parametric continuity not possible to enforce, can relax to
 - "Visual" smoothness: direction of tangents stays the same, but magnitude (speed) may change

Geometric continuity

geometric continuity

- **G**⁰ continuous: curve segments are connected (same as **C**⁰)
- G¹: G⁰ & 1st-order derivatives are proportional at joints.
- Note:
 - Proportional = same direction but may have different magnitudes
 - Weaker than C¹
- **G**²: **G**¹ & 2nd-order derivative proportional at joints
- Example: p(t) = (3t, t³) and q(t) = (4t+3, 2t²+4t+1) with t ∈ [0, 1] for each. Is this C⁰, G¹, and/or C¹?
 p(1)=q(0)=(3,1), so G⁰; p'(1)=(3,3) and q'(0)=(4,4), so G¹ not C¹

Now on to curve design

Do you say to yourself,

"I want to design a cubic curve $a_3t^3 + a_2t^2 + a_1t + a_0$ with $a_3 = 1$, $a_2 = -9$, $a_1 = 4$, and $a_0 = 21$ "?

Curves with the right design constraints

- Want to design piecewise cubic polynomial curves that satisfy certain design constraints, e.g.,
 - Curve should pass certain points
 - Curve should have some given derivatives at specific points
 - Curve should be smooth: G^1 , C^1 , C^2 , or ...
 - Curve must be contained in certain area, or has at most this length, etc.
- Need to use proper basis functions to facilitate the design process
- Often, the basis used identifies the curve representation

Basis functions and control points

- Recall basis expansion: $x(t) = P_1b_1(t) + P_2b_2(t) + P_3b_3(t) + P_4b_4(t)$
- Monomial basis, {1, t, t², t³}: only one of many possible bases for cubic polynomials
- From a design point of view, want P₁, P₂, P₃, and P₄ to represent observable quantities (not so for monomial basis), e.g.,
 - Position: for interpolation
 - Derivatives: to control direction and smoothness, etc.
- P_1 , P_2 , P_3 , and P_4 serve as control points
- Control points are blended by the basis functions b_1 , b_2 , b_3 , and b_4

Example 1: Cubic Hermite curves

- Defined by two points (P₁ and P₄) and two tangents (R₁ and R₄)
- Aim: Achieve C¹ or G¹ continuity
- Want cubic curve x(t), $t \in [0, 1]$, such that
 - $x(0) = P_1$ $x(1) = P_4$ $x'(0) = R_1$
 - $x'(1) = R_4$

(y and z are similar)

 Usage example: determining the trajectory of a ball in animation

Let us note that the control "points" P_1 , P_4 , R_1 , and R_4 are all observable quantities and they control the shape of the curve

Cubic Hermite curves

• $x(t) = TA = a_3t^3 + a_2t^2 + a_1t + a_0$, where $T = [t^3 t^2 t 1]$ and $A = [a_3 a_2 a_1 a_0]^T$. We want

 $x(0) = P_1 = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} A$ $x(1) = P_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} A$ $x'(0) = R_1 = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} A$ $x'(1) = R_4 = \begin{bmatrix} 3 & 2 & 1 & 0 \end{bmatrix} A$

or
$$G = \begin{bmatrix} P_1 \\ P_4 \\ R_1 \\ R_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} A = BA$$

• Hence, G = BA and thus $A = B^{-1}G$

• It follows that $x(t) = TA = TB^{-1}G = HG$

Cubic Hermite curves

• How to interpret this: $x(t) = TA = TB^{-1}G = HG$

- *G*: vector of observables or control points
- H: vector of cubic Hermite basis (blending) functions

$$H = [2t^{3} - 3t^{2} + 1, -2t^{3} + 3t^{2}, t^{3} - 2t^{2} + t, t^{3} - t^{2}]$$

- For any G, use H to blend four control points to get curve x(t)
- The matrix $M_{\text{hermite}} = B^{-1}$ is really a **change-of-basis matrix**: changes the monomial basis *T* into the Hermite basis *H*
- Hermite curves are completely determined by M_{hermite}

The cubic Hermite matrix

n and a state of the state of the

$M_{\it Hermite} =$	2	-2	1	1
	-3	3	-2	-1
	0	0	1	0
	1	0	0	0

The Hermite change of basis matrix or its basis identifies the Hermite representation of cubic parametric curves

Any cubic parametric curve can be specified in Hermite form

Piecewise Hermite curves

Can obviously enforce C¹ or G¹ continuity at the joints
 Each segment parameterized over [0, 1] as usual

From curves to surfaces

- One easy way: sweep a curve whose control points also trace out some curves, e.g., bilinear interpolation
- Fit the simplest surface between four points
- Sweep a straight line and each point on the line traces a straight line
- An example of a ruled surface
- An example of tensor-product surfaces

bilinear interpolation

Tensor-product (TP) surfaces

The curve to sweep:

 $p(u) = \sum_{i=0}^{m} a_i A_i(u)$

$$a_i = q_i(v) = \sum_{j=0}^n P_{ij}B_j(v)$$

The resulting surface is a tensor-product surface

$$p(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} P_{ij} A_i(u) B_j(v) = \mathbf{A}(\mathbf{u})^{\mathrm{T}} \mathbf{P} \mathbf{B}(\mathbf{v})$$

Surface is controlled by the grid of control points P_{ij}

Tensor-product (TP) surfaces

$$p(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} P_{ij} A_i(u) B_j(v) = \mathbf{A}(\mathbf{u})^{\mathrm{T}} \mathbf{P} \mathbf{B}(\mathbf{v})$$

Curvature of surfaces

Regular point on a surface

- Consider all curves lying in the surface through the point
- Point is regular if tangent vectors of all these curves lie in the same plane — the tangent plane
- Surface normal at regular point: normal to tangent plane
- Intersection between surface and a plane through the normal is called a normal section
- **Principal curvatures**: maximum (κ_1) and minimum (κ_2) curvatures of the normal sections

Curvature of surfaces

Mean curvature:

Gaussian curvature:

 $K_1 K_2$

- For a regular point, the two principal (curvature) directions are perpendicular
- Elliptic, hyperbolic, parabolic, umbilical points

Exercises

anders and an and a state bases of the later of the state of the

Design a curve of your own, e.g., interpolate two end points and interpolate position and tangent at midpoint – compute C.O.B. matrix

Identify the curve ...

de Casdeljau algorithm

Primitive fitting

 Given a set of points, find the parameters of a primitive (e.g., a line or plane, a sphere, or a cylinder) to provide the best fitting

Image taken from Ragon Ebker https://www.baeldung.com/cs/ransac

What is the best fitting?

Least square (LSQ) fitting: find the primitive which minimizes the sum of squared distances from the set of points

Image taken from Ragon Ebker https://www.baeldung.com/cs/ransac

Problem with LSQ

Outliers!

Image taken from Ragon Ebker https://www.baeldung.com/cs/ransac

Problem with LSQ

Even very few outliers can cause problems

Image taken from Robert Collins https://www.cse.psu.edu/~rtc12/CSE486/lecture15.pdf

Problem with LSQ

Even very few outliers can cause problems

Image taken from Robert Collins https://www.cse.psu.edu/~rtc12/CSE486/lecture15.pdf

A good solution: RANSAC

- RANSAC = RANdom SAmple Consensus
- Key idea: classify points into inliers, outliers, and eliminate the latter
- The model/primitive is only fit to the inliers

M. A. Fischler and R. C. Bolles (June 1981). "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography". *Comm. of the ACM* **24**: 381--395.

Image taken from Robert Collins https://www.cse.psu.edu/~rtc12/CSE486/lecture15.pdf

RANSAC

Key idea: classify points into inliers, outliers, and eliminate the latter

- The model/primitive is only fit to the inliers\
- RANSAC = RANdom SAmple Consensus

Robert Collins	
CSE486, Penn	S

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

Determine:

s — the smallest number of points required N — the number of iterations required \mathbf{d} — the threshold used to identify a point that fits well T— the number of nearby points required to assert a model fits well Until Niterations have occurred Draw a sample of **S** points from the data uniformly and at random Fit to that set of **S** points For each data point outside the sample Test the distance from the point to the line against **d** if the distance from the point to the line is less than **d** the point is close end If there are **T** or more points close to the line then there is a good fit. Refit the line using all these points. end Use the best fit from this collection, using the fitting error as a criterion

(Forsyth & Ponce)