

Modeling Paradigms for 3D Content Creation

Richard (Hao) Zhang

CMPT 464/764: Geometric Modeling in Computer Graphics

Lecture 2

Recall ...

Computer graphics = synthesis of all visual content

Today, modeling emphasizes creation, not reconstruction

3D Content Creation

Inspiration \Rightarrow a **readily usable** digital 3D model

Realistic 3D reconstruction

Inspiration = real-world data, e.g., a laser point scan

Novel 3D content creation

Creation of novel 3D shapes, not from real scans/images

Novel 3D content creation

Inspiration: text description, design concept (e.g., sketch) or constraint (e.g., compactness), usage scenario, existing model(s), or a picture, ...

Creation of novel 3D shapes not from real scans/images

[[]Yu and Zhang 2007]

3D content creation is generally hard

One of the most central problems in graphics

Jim Kajiya's award talk: main reason why graphics is not as ubiquitous as we would have liked it to be.

How good is state of the art in 2024?

"A baby bunny sitting on top of a stack of pancakes" 3D model generated from text [Zhu et al. 2023]

(Re)usable 3DCC is even harder

 Models created are meant for subsequent use
 Creation of readily (re)usable 3D models, with useful info beyond low-level primitives, e.g., points, triangles, etc.

(Re)usable 3DCC is even harder

Models created are meant for subsequent use

 Creation of readily (re)usable 3D models, with useful info beyond low-level primitives, e.g., points, triangles, etc.
 Higher-level information is more meaningful and reusable

(Re)usable 3DCC is even harder

High-level information to extract or **learn** — analysis problems, which we will study in this course

Key: data reuse

 Exploit existing, possibly pre-analyzed, models → a data-driven approach

- New models = variations of existing 3D models
- Existing models can be inspiration to start with

Modeling paradigms

Human-in-the-loop editing

- User interaction plays a central role
- Various editing paradigms
- Can start from scratch or from existing 3D models

Modeling paradigms

Human-in-the-loop editing

User interaction plays a central role

- Various editing paradigms
- Can_start from scratch or from existing 3D models
- Semi-automatic to automatic synthesis
 - Classical: data-driven variation of existing 3D models
 - User can provide sparse/abstract constraints
 - Modern: generative modeling from scratch, even noise

Key considerations

and a second second

- Quality
- Speed
- Controllability

Modeling paradigms

Human-in-the-loop editing

- User interaction plays a central role
- Various editing paradigms
- Can start from scratch or from existing 3D models
- Semi-automatic to automatic synthesis
 - Classical: data-driven variation of existing 3D models
 - User can provide sparse/abstract constraints
 - Modern: generative modeling from scratch, even noise

Modeling paradigms

Editing

- From scratch: 2D to 3D
 - From engineering drawings
 - From freeform sketches to 3D models and for editing
- Fundamental 3D editing operators
 - Sweeping
 - Constructive solid geometry (CSG)
 - Free-form deformation: various editing handles
 - Part composition

Modeling from engineering drawings

Most fundamental operation: extrusion

Additional operations: e.g., lifting, etc.

[Yu and Zhang 2007]

Modeling from engineering drawings

Major application domain: architectural design/modeling

Well-known example: (Google) SketchUp

Modeling from freeform sketches

📾 state a state waar in a 🗤 👘 baar ah 🖬 🖓 👘 🕼 🖓 👘 👘 state a state waar in a sta

2D sketches most natural for editing

Early work: Teddy by [Igarashi SIG 1999]

Sketch-based modeling

- 2D sketches most natural for editing
- Aside from extrusion

Early work: Teddy by [Igarashi SIG 1999]

[Nealen et al. 2007 & 2005]

input sketch semantic classification interactive matching real-time snapping geosemantic snapping

FiberMesh video

https://www.youtube.com/watch?v=OsOauFjnYSo

Sweeping

- - Creates a swept volume: a means for solid modeling
 - Simplest case: sweep a 2D cross-section along a curve
 - Create generalized cylinders
 - Great success: <u>3-sweep</u>: 2.3M views on Youtube!

3-sweep video

https://www.youtube.com/watch?v=Oie1ZXWceqM

Sweeping

- Creates a swept volume: a m ans for solid modeling
 Simplest case: sweep a 2D or pss-section along a curve
 - Create generalized cylinders
 - Great success: <u>3-sweep</u>: 2.3M views on Youtube
- Tensor-product surfaces (next lecture)
 - Sweep a curve and each point on curve goes through a (different) curve
- More generally: sweep arbitrary shapes

SweepNet: Unsupervised Learning Shape Abstraction via Neural Sweepers ECCV 2024

Mingrui Zhao¹, Yizhi Wang¹, Fenggen Yu¹, Changqing Zou², Ali Mahdavi-Amiri¹, ¹Simon Fraser University ²Zhejiang University

Constructive solid geometry (CSG)

 Built on a set of solid primitives, e.g., cubes, spheres, cylinders, and more general parametric models

Construction via recursive Boolean operations

CSG: fundamental shape representation

Recursion results in a tree representation: CSG tree

- Interesting question: inverse CSG
 - How to recover the tree?

Images taken from Wikipedia

CSG: fundamental shape representation

Recursion results in a tree representation: CSG tree

- Interesting question: inverse CSG
 - How to recover the tree?
 - Use of deep learning in 2020

Images taken from Wikipedia

CSG: fundamental shape representation

Recursion results in a tree representation: CSG tree

- Interesting question: inverse CSG
 - How to recover the tree?
- Related: concavity trees

Images taken from Wikipedia

Free-form deformation

What are the deformation handles?

- Anchor points
- Skeletons
- Wires
- Cages
- What needs to be preserved away from handles?
 - Surface details
 - Shape structures, e.g., symmetry

Mesh deformation by anchor points

K. Xu, H. Zhang, and D. Cohen-Or, "Dynamic Harmonic Fields for Shape Processing", *IEEE Shape Modeling International 2009.*

Video demo [2:04:00 -]

Dynamic Harmonic Fields for Surface Processing

Submission ID: 1203

K. Xu, H. Zhang, and D. Cohen-Or, "Dynamic Harmonic Fields for Shape Processing", *IEEE Shape Modeling International 2009.*

Skeletons and mesh skinning

Shape characterized by a set of bones (the skeleton)

- The boundary surface acts as "skins"
- Boundary vertices specified as weighted combinations of bone vertices
- Editing done on the bones and the skins will follow

iWires: analyze-and-edit

Wires as control handles [Singh & Fiume 1999]
 Edits must preserve structural relations among wires
 E.g., symmetry, co-planarity, perpendicularity, etc.

[Gal et al. 2009]
iWires video

le la construction de la

[Gal et al. 2009]

Cage-based mesh deformation

Cages are simple enclosing primitives, e.g., cuboids
Edits done on cages with shape properties preserved
E.g., coordinates of interior points as weights on cage vertices

Component-wise controllers

Cuboids and generalized cylinders as control handles

- These simple primitives bound shape parts, like cages
- Edits preserve structures among controllers, like iWire

Component-wise controller video

Commonalities

Handles are all simple primitives

- Simple to specify and manipulate
- But provide good shape abstraction
- Getting good abstractions non-trivial
 - E.g., curve skeleton or cage extraction
- Important to derive properties to preserve
 - Encoding surface details
 - Structure (e.g., symmetry) detection

[Tagliassachi et al. SIG 2009]

Modeling from parts

and a second second

Modeling via part re-assembly [Funkhouser et al., SIG 2004]

Key: segmentation, shape understanding

and a second second

armrest

Automatic synthesis

No longer editing of an existing 3D model

- But exploit existing, possibly pre-analyzed, models for automatic or semi-automatic model synthesis
- Mostly a data-driven approach

Modeling as variations

New models = variations of existing 3D models

- Paradigm I: variation as modification of an existing model
- Paradigm II: via part composition, from multiple models

Inspiration: a single photograph [Xu et al., SIG 2011]

47

From single photo to 3D

Not editing; modeling inspired by a single photo

- Warp an existing 3D model to fit object silhouette
- Structure preservation ensures a coherent 3D model

photo

photo

Retrieved candidate model

and a state of the second s

photo

Retrieved candidate model

Result of deformation to fit silhouette

by symmetry

by proximity

additional optimization

Structure retargeting

Key words: analyze-and-stretch; increases or decrease pattern repetitions instead of geometric stretch

Structure retargeting

Structure-preserving retargeting of irregular 3D architecture [Lin et al., SIG Asia 2011]

Structure retargeting video

Variation as part composition

- Modeling by example [Funkhouser et al. 2004]
- Fit & diverse [Xu et al. 2012]
- Structure recovery by part assembly [Shen et al. 2012]

Modeling by example

- New models composed by parts retrieved from an existing database
 Key: retrieve relevant parts by geometric similarity of parts
- Many variants to date

[Funkhouser et al. 2004]

Fit & diverse

 Different from previous works: instead of generating one model at a time, evolve sets of shapes together

Inspired by the biological process of evolution

[Xu et al. 2012]

Fit & diverse

Off-springs by part mutation (warp) and cross-over (part reassembly): leads to diversity in shape creations

- A "design gallery": user specifies "likes" or "dislikes"; defines fitness function
- Potential for creativity!

[Xu et al. 2012]

Structure recovery by part assembly

- Modeling from single Kinect depth scan + RGB image
- Unlike [Xu et al. 2011], model is built by part assembly from multiple shapes, more versatile than just warp

[Shen et al. 2012]

Fast track to 2024: 3D GenAl

Most popular: 3D Generative AI (GenAI) from scratch

- Basically hallucination ("dreaming?") with some level of conditioning

Single-view image

Controllable 3D generation

Give creators coarse structural control, then "detailize"

ShaDDR: geometry detailization and texture generation [Chen et al. SIGGRAPH Asia 2023]

Controllable 3D generation

Give creators coarse-level structural control, then "detailize"

ShaDDR: geometry detailization and texture generation [Chen et al. SIGGRAPH Asia 2023]

Text-to-X is fun, but texts are not sufficiently expressive to provide spatial control with locality, dimension, and other 3D attributes

ShaDDR: geometry detailization and texture generation [Chen et al. SIGGRAPH Asia 2023]