# **Course Introduction**

Richard (Hao) Zhang

CMPT 464/764: Geometric Modeling in Computer Graphics

Lecture 1



CG = synthesis of all visual (especially 3D) content, with four pillars

modeling + rendering + processing/manipulation + animation

## CMPT 464/764

CG = synthesis of all visual (especially 3D) content, with four pillars

modeling + rendering + processing/manipulation + animation

- Focuses on modeling (reconstruction + generation) and understanding of 3D shapes
- Compared to CMPT 361, we now deal with much more complex shapes, rather than a single line, polygon, or curved patch



# What is a shape?









Despite large geometric differences, could be the same topologically
 Topological equivalence: clay sculpting without tearing or joining





#### Despite large geometric differences could be the same topologically

- Sphere has a close-form mathematical representation
  - Explicit representation for hemisphere:  $z = (r^2 x^2 y^2)^{1/2}$
  - Implicit:  $x^2 + y^2 + z^2 = r^2$
  - **Parametric:** ( $r \cos \phi \cos \theta$ ,  $r \cos \phi \sin \theta$ ,  $r \sin \phi$ )

Not so clear for the dragon



- Could be the same topologically
- Sphere has a close-form mathemalical representation
  - **Explicit** representation for hemisphe e:  $z = (r^2 x^2 y^2)^{1/2}$
  - **Parametric:**  $(r \cos \phi \cos \theta, r \cos \phi \sin \theta, r \sin \phi)$
  - Not so clear for the dragon

#### Sphere representation is **compact**: radius & center (high-level)

The dragon need many points **explicitly** specified, e.g., using a mesh with ~440K vertices and ~870K faces, or represented **implicitly** (later)



- How should the shapes be rendered? It depends on the (low-level) 3D representations
  - Parametric primitives  $\rightarrow$  ray tracing
  - Meshes → polygon shading or ray tracing
  - Points (or Gaussians)  $\rightarrow$  splatting
  - Voxels  $\rightarrow$  volume rendering, e.g., through line integrals







9

# Sphere vs. the dragon

- How to generate? From text? Various modeling paradigms (next lecture)













### How do we represent shapes?

Classical way – defined with closed-form functions

- **Explicit:** y = f(x), z = f(x, y), w = f(x, y, z)
- Implicit: f(x, y, z) = 0 implicit surface modeling
- Parametric: (x(t), y(t)), (x(u, v), y(u, v), z(u, v)) e.g., Bezier or B-spline



# Model acquisition or learning

What if a closed-form function is not readily available (e.g., for the dragon/Buddha)? — such model needs to be acquired or learned

How? Text? — too coarse and too ambiguous

# Model acquisition or learning

What if a closed-form function is the readily available (e.g., for the dragon/Buddha)? — such model aeds to be acquired or learned

How? Text? — too coarse and to combiguous

Take a picture? — probably need more than one picture (multi-view representation) and 3D reasoning is still hard (lectures later)

More reliable: acquire/learn from point clouds by laser scans



## **Example:** points and meshes

Points can be connected to form a piecewise linear approximation of original shape – a polygonal mesh





# Key problems: reconstruction

#### How to connect the points to obtain an accurate approximation?

#### - Surface reconstruction Harder with missing/incomplete data!



# Key problems: reconstruction

- Most popular: 3D from multi-view and sensor
  - Reconstruction from single- or multi-view images
  - Reconstructed results "stored" in a neural network

|                      | Sele | cting a category below changes the paper list on t                | ne rig |
|----------------------|------|-------------------------------------------------------------------|--------|
|                      | SE   | LECT J Top 10 overall by number of authors                        | AU     |
|                      | 1    | 3D from multi-view and sensors                                    |        |
|                      | 2    | Image and video synthesis and generation                          |        |
|                      | 3    | Humans: Face, body, pose, gesture, movement                       |        |
|                      | 4    | Transfer, meta, low-shot, continual, or long-tail learning        |        |
|                      | 5    | Recognition: Categorization, detection, retrieval                 |        |
|                      | 6    | Vision, language, and reasoning                                   |        |
|                      | 7    | Low-level vision                                                  |        |
|                      | 8    | Segmentation, grouping and shape analysis                         |        |
|                      | 9    | Deep learning architectures and techniques                        |        |
|                      | 10   | Multi-modal learning                                              |        |
|                      | 11   | 3D from single images                                             |        |
|                      | 12   | Medical and biological vision, cell microscopy                    |        |
|                      | 13   | Video: Action and event understanding                             |        |
|                      | 14   | Autonomous driving                                                |        |
|                      | 15   | Self-supervised or unsupervised representation learning           |        |
|                      | 16   | Datasets and evaluation                                           |        |
|                      | 17   | Scene analysis and understanding                                  |        |
|                      | 18   | Adversarial attack and defense                                    |        |
|                      | 19   | Efficient and scalable vision                                     |        |
|                      | 20   | Computational imaging                                             |        |
| <mark>/  &gt;</mark> | 21   | Video: Low-level analysis, motion, and tracking                   |        |
|                      | 22   | Vision applications and systems                                   |        |
|                      | 23   | Vision + graphics                                                 |        |
|                      | 24   | Robotics                                                          |        |
|                      | 25   | Transparency, fairness, accountability, privacy, ethics in vision |        |
|                      | 26   | Explainable computer vision                                       |        |
|                      | 27   | Embodied vision: Active agents, simulation                        |        |
|                      | 28   | Document analysis and understanding                               |        |
|                      | 29   | Machine learning (other than deep learning)                       |        |
|                      | 30   | Physics-based vision and shape-from-X                             |        |
|                      | 31   | Biometrics                                                        |        |
|                      | 32   | Others                                                            |        |
|                      | 33   | Optimization methods (other than deep learning)                   |        |
|                      | 34   | Photogrammetry and remote sensing                                 |        |
|                      |      |                                                                   |        |

CVPR 2023 by the Numbers

41

35 Computer vision theory



Single-view image



Neural Radiance Field (NeRF) for novel view synthesis [Mildenhall et al. ECCV 2020]

# Key problems: 3D generative modeling

Most popular: 3D Generative AI (GenAI)

- Basically hallucination ("dreaming?") with some level of conditioning





FAME (Functionality-Aware Model Evolution) for example-based 3D shape creation [Guan et al. IEEE TVCG 2022]

#### Other problems (not covered in this course)

What if full details are not required, e.g., when object is far/moving?

- the problem of mesh decimation and multiresolution (LOD) modeling



#### Other problems (not covered in this course)

**Full model needed**, but the file is too large to transfer

- the problem of **mesh compression** 

- So much is known about functions (derivatives, etc.), but acquired mesh models are not functions yet
  - make it a function: defined over regular domain, e.g., 2D plane





### Other problems (not covered in this course)

**Full model needed**, but the file is too large to transfer

- the problem of **mesh compression** 

So much is known about functions (derivatives, etc.), but acquired mesh models are not functions yet

- make it a function: defined over regular domain, e.g., 2D plane

- mesh parameterization a.k.a. texture mapping











# Analysis problems in CMPT 464/764

No need for the tens of thousand of triangles! Only need few feature lines and a high-level description (e.g., an abstraction), e.g.,







# Analysis problems in CMPT 464/764

No need for the tens of thousand of triangles! Only need few feature lines and a high-level description (e.g., an abstraction), e.g.,







Or an organization of the constituent parts of shape

- the problem of mesh segmentation, and in general, 3D shape analysis







# Low vs. high level processing

Low-level geometry processing

The HIP thing: HIgh-level geometry Processing

✓ non-local analysis; structure-aware, e.g., symmetry

- ✓ not easy to formulate objectives mathematically
- ✓ utilization of prior knowledge
- ✓ moving from model-driven to data-driven and ML

## **Example: shape segmentation**

A local criteria from study of visual perception

Minima rule: cut boundary is at negative minima of curvature. Roughly speaking, over concavity.



# Use of the minima rule



#### 5 parts





16 parts

# More meaningful ... at a higher level





#### "An understanding of semantics"

# Symmetry



5 parts

5 parts





New challenges to segmentation and other analyses:
How to do it really well to approach human ability?
Knowledge-driven: supervised/unsupervised
Other knowledge: e.g., utilization of a set = co-segmentation

## **Co-segmentation** (higher-level)



O. Sidi, O van Kaick, Y. Klienman, H. Zhang, D. Cohen-Or, "Unsupervised Co-Segmentation of a Set of Shapes via Descriptor-Space Spectral Clustering", *SIGGRAPH Asia 2011.* 

## Power of a set ...



O. Sidi, O van Kaick, Y. Klienman, H. Zhang, D. Cohen-Or, "Unsupervised Co-Segmentation of a Set of Shapes via Descriptor-Space Spectral Clustering", *SIGGRAPH Asia 2011.* 

## Shape correspondence (higher-level)

a and a second second



Utilization of prior knowledge (recognition) via training set or other learning mechanism

# Recognize/understand before create



### This course

- Modeling paradigms for 3D content creation
- Introduces various 3D representations and their neuralization
- Covers the acquisition, analysis (understanding), (novel) creation, and fabrication of 3D (surface) shapes
- Quite a bit of machine learning: neural network basics, autoencoders, etc.
- Touches (lightly) upon topics from several mathematical fields, e.g.,
  - plane and stereo geometry; differential geometry, e.g., curvatures
  - combinatorial and computational geometry, e.g., Voronoi diagrams

## What you can take away ...

#### Geometric modeling and processing basics

- Basic concepts that have wide-ranging applications
- Often beyond geometric modeling or computer graphics
- Learned through lectures and reference readings
- No advanced mathematics preparation assumed
- Becoming a semi-expert on a selected topic
  - Through completion of a programming assignment and course project

## How can I do well?

#### You should feel inspired by the topics and future plans

- Attend classes, be prepared, and be active in class
- Do not be shy about asking questions and work with you peers
- Good programming skills
- Good team work

# Summary

The new view of computer graphics

- It is beyond image synthesis via rendering
- It is about creation and manipulation of all visual content
- Creation of novel 3D shapes is the new challenge
- We cover both classical topics on modeling, processing, and analysis of discrete geometric shapes as well as emerging topics
- Learn the classical techniques and be prepared for addressing challenges from new computer graphics

## Exercises

- Play around with some existing mesh viewing software (Google around), in particular, MeshLab.
- Get familiar with some 3D geometry formats, e.g., OBJ, SMF, etc. (<u>http://www.martinreddy.net/gfx/3d-hi.html</u>)
- Try out some 3D modeling tools, e.g., Blender (<u>https://www.blender.org/</u>)
- Try out some attempts as automated 3D creation: e.g., IM-NET (<u>https://github.com/czq142857/IM-NET</u>)
- Check out latest buzz on 3D GenAI, from Nvidia/Google/Autodesk/Amazon