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Abstract

This paper investigates belief revision where the underlying logic is that governing Horn
clauses. We show that classical (AGM) belief revision doesn’t immediately generalise to
the Horn case. In particular, a standard construction based on a total preorder over possible
worlds may violate the accepted (AGM) postulates. Conversely, in the obvious extension
to the AGM approach, Horn revision functions are not captured by total preorders over
possible worlds. We address these difficulties by introducing two modifications to the
AGM approach. First, the semantic construction is restricted to “well behaved” orderings,
what we call Horn compliant orderings. Second, the revision postulates are augmented
by an additional postulate. Both restrictions are redundant in the AGM approach, but not
in the Horn case. In a representation result we show that the class of revision functions
captured by Horn compliant total preorders over possible worlds is precisely that given
by the (extended) set of Horn revision postulates. Further, we show that Horn revision
is compatible with work in iterated revision and work concerning relevance in revision.
We also consider specific revision operators. Arguably this work is interesting for several
reasons. It extends AGM revision to inferentially-weaker Horn theories; hence it sheds
light on the theoretical underpinnings of belief change, as well as generalising the AGM
paradigm. Thus, this work is relevant to revision in areas that employ Horn clauses, such
as deductive databases and logic programming, as well as areas in which inference is
weaker than classical logic, such as in description logic.
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1. Introduction

The area of belief change studies how an agent may modify its beliefs given
new information about its environment. The best-known approach to belief change
is the AGM paradigm [1, 16], named after the original developers. This work fo-
cussed on belief revision, in which new information is incorporated into an agent’s
belief corpus, as well as belief contraction, in which an agent may reduce its set of
beliefs. The AGM approach addresses belief change at an abstract level, in which
an agent’s beliefs are characterised by belief sets or deductively closed sets of sen-
tences, and where the underlying logic includes classical propositional logic. In
this approach to revision, a set of rationality postulates is given which arguably
any revision function should satisfy. As well, a semantic construction of revision
functions has been given, in terms of a total preorder over possible worlds, called
a faithful ranking [18]. These syntactic and semantic approaches have been shown
to capture the same set of revision functions.

In this paper we address AGM-style belief revision in the language of Horn
clauses, where a Horn clause can be expressed as a rule of the form a1 ∧ a2 ∧
· · · ∧ an → a for n ≥ 0, and where a, ai (1 ≤ i ≤ n) are atoms, and a is an atom
or the constant falsum ⊥. (Thus, expressed in conjunctive normal form, a Horn
clause is a clause with at most one positive literal.) In our approach, an agent’s
beliefs are represented by a Horn clause belief set, and the input is a Horn formula,
consisting of a conjunction of Horn clauses. It proves to be the case that AGM-
style belief revision doesn’t transfer directly to Horn knowledge bases. On the one
hand, in the Horn case the AGM postulate set is unsound with respect to faithful
rankings over possible worlds. On the other hand, given a Horn revision function
that satisfies the AGM postulates, there may be no corresponding faithful ranking
that captures the revision function or, alternately, there may be several faithful
rankings that capture the function.

Nonetheless, we show that the AGM approach can be extended to the Horn
case naturally and satisfactorily. On the semantic side, we impose a “well-behaved”
condition on faithful rankings, expressing that a ranking must be coherent with re-
spect to Horn revision. We call such rankings Horn compliant. On the syntactic,
postulational, side, we add a postulate to the standard suite of AGM postulates.
Interestingly, in the AGM approach this additional postulate is redundant, in that
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it follows as a theorem from the other AGM postulates. In the Horn case, in
which the language is less expressive than in the classical case, this postulate is
independent of the others. Given these adjustments to the AGM approach, we
then prove a representation result, showing that the class of Horn revision func-
tions conforming to the extended postulate set is the same as those capturable by
Horn compliant faithful rankings. Moreover, we prove Horn revision, as modelled
herein, is consistent with Darwiche and Pearl postulates for iterated revision [8]
and with Parikh’s postulate for relevance [22]. A final contribution of our work
is the development of two specific Horn revision operators, called basic Horn re-
vision and canonical Horn revision, with polynomial time complexity (O(n) and
O(n2 logn) respectively).

This topic is interesting for several reasons. It sheds light on the theory of
belief change, in that it weakens the assumption that the underlying logic contains
propositional logic. In so doing, it shows that the AGM approach is more gen-
erally applicable than perhaps originally believed. That is, our results provide a
broadening of the AGM approach to include Horn reasoning, and not just a modi-
fication of the AGM approach to accommodate Horn reasoning. Horn clauses are
a very useful restriction of classical logic, and have found widespread application
in artificial intelligence and database theory. As well, results here may also be
relevant to belief change in description logics, a topic that has also received recent
attention.

The next section gives basic notation and definitions used in the paper. The
third section introduces belief change and related work that has been carried out
in belief change in Horn clause reasoning. This is followed by a discussion of
issues that arise in Horn clause belief revision (Section 4). Section 5 develops
the approach, and in particular presents the representation result for Horn formula
revision. Section 6 discusses iterated Horn revision, while Section 7 discusses
relevance and Horn revision, and Section 8 introduces specific Horn revision op-
erators and examines their computational complexity. The paper concludes with
a discussion of future work and a brief conclusion.

2. Formal Preliminaries

We introduce here the terminology that we will use in the rest of the paper.
P = {a, b, c, . . . } is a finite set of propositional variables. LH denotes the Horn
formula language over P ∪ {⊥}. That is, LH is the least set given by:
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1. a1 ∧ a2 ∧ · · · ∧ an → a is a Horn clause, where n ≥ 0 and a, ai ∈ P ∪ {⊥}
for 1 ≤ i ≤ n.
If n = 0 then→ a is also written a, and is a fact.

2. If φ is a Horn clause then (φ) is a Horn formula.
3. If φ and ψ are Horn formulas then so is (φ ∧ ψ).

In our approach, we deal exclusively with Horn formulas, and so formula will
refer to a Horn formula; the only exception is when we discuss background work,
in which case the context is clear. Formulas are denoted by lower case Greek
letters; sets of formulas are denoted by upper case Greek letters. Parentheses are
required in 2. above to distinguish, for example (p ∧ q → r) from (p) ∧ (q → r).
Nonetheless we freely drop parentheses when the meaning is clear.

An interpretation w is a subset of P , where a ∈ w means that a is assigned
true in w and a 6∈ w means that a is assigned false in w. Occasionally we will
explicitly list negated atoms in an interpretation; for example for P = {p, q}
the interpretation {p} will sometimes be written {p,¬q} or more briefly pq. The
symbol ⊥ is always assigned false. M is the set of interpretations or (possible)
worlds (we use these terms interchangeably). Sentences of LH are true or false in
an interpretation according to the standard rules in propositional logic. Truth of
φ in w is denoted w |= φ. As well, for W ⊆ M, W |= φ iff for every w ∈ W ,
w |= φ. For formula φ, [φ] is the set of models of φ. For set of worlds W , tH(W )
denotes the set of formulas satisfied by all worlds in W , i.e.

tH(W ) = {φ ∈ LH | m |= φ for every m ∈ W}.

Note that this means that tH(∅) = LH .

Γ ` φ iff φ is derivable from the set of formulas Γ. Again, members of Γ
and φ are Horn, and ` is defined in terms of Horn formulas; see [12] for details.
ψ ` φ is an abbreviation for {ψ} ` φ, and ψ ≡ φ is logical equivalence, i.e. ψ ` φ
and φ ` ψ. This extends in the obvious fashion to sets of formulas. For a set of
formulas Γ, the closure of Γ under Horn derivability is denoted CnH(Γ). A (Horn)
theory H is a set of formulas such that H = CnH(H), also referred to as a belief
set. H is the set of Horn theories. For theory H and formula φ,

H + φ = CnH(H ∪ {φ})

is the expansion of H . H⊥ = LH is the inconsistent belief set.

Models of Horn formulas are distinguished by the fact that they are closed
under intersection of positive atoms in an interpretation. That is:
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If w1, w2 ∈ [φ] then w1 ∩ w2 ∈ [φ].

Note that the converse is also true; i.e., if a set of models W is closed under
intersection of positive atoms in an interpretation, then there is a Horn formula φ
such that [φ] = W .

A (partial) preorder� is a reflexive, transitive binary relation. A total preorder
is a partial preorder such that w1 � w2 or w2 � w1 for every w1, w2. The strict
part of the preorder � is denoted by ≺, that is, w1 ≺ w2 just if w1 � w2 and
w2 6� w1. As usual, w1 ≈ w2 abbreviates w1 � w2 and w2 � w1. Finally, for a set
of interpretations W ⊆M, we define the set min(W,�) by

min(W,�) = {w1 ∈ W | for all w2 ∈ W, if w2 � w1 then w1 � w2}.

3. Background

3.1. Belief Revision

In the AGM approach to belief change [1, 16], beliefs of an agent are modelled
by a deductively closed set of formulas, or belief set. Thus a belief set is a set of
formulas K such that K = Cn(K), where Cn(K) denotes the closure of K under
classical logical consequence. It is assumed that the underlying logic contains
classical propositional logic. Belief revision is modelled as a function from a
belief set K and a formula φ to a belief set K ′ such that φ is believed in K ′, i.e.
φ ∈ K ′. Since φ may be inconsistent with K, and since it is desirable to maintain
consistency whenever possible (i.e. whenever φ is consistent) then some formulas
may need to be dropped from K before φ can be consistently added. Formally, a
revision operator ∗maps a belief setK and formula φ to a revised belief setK ∗φ.
The AGM postulates for revision specify conditions that arguably should hold
for any rational revision operator. These postulates can be expressed as follows,
where ≡PC and +PC stand for logical equivalence and expansion, respectively, in
classical propositional logic.

(K*1) K ∗ φ = Cn(K ∗ φ)

(K*2) φ ∈ K ∗ φ

(K*3) K ∗ φ ⊆ K +PC φ
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(K*4) If ¬φ /∈ K then K +PC φ ⊆ K ∗ φ

(K*5) K ∗ φ is inconsistent only if φ is inconsistent

(K*6) If φ ≡PC ψ then K ∗ φ = K ∗ ψ

(K*7) K ∗ (φ ∧ ψ) ⊆ K ∗ φ+PC ψ

(K*8) If ¬ψ /∈ K ∗ φ then K ∗ φ+PC ψ ⊆ K ∗ (φ ∧ ψ)

Thus, the result of revising K by φ yields a belief set in which φ is believed
((K*1), (K*2)); whenever the result is consistent, the revised belief set consists of
the expansion of K by φ ((K*3), (K*4)); the only time that K is inconsistent is
when φ is inconsistent ((K*5)); and revision is independent of the syntactic form
of the formula for revision ((K*6)). The last two postulates deal with the relation
between revising by a conjunction and expansion: whenever consistent, revision
by a conjunction corresponds to revision by one conjunct and expansion by the
other. Motivation for these postulates can be found in [16, 25]. We shall call any
function ∗ that satisfies (K ∗ 1) – (K ∗ 8) an AGM revision function.

Katsuno and Mendelzon [18] have shown that a necessary and sufficient con-
dition for constructing an AGM revision operator is that there is a function that
associates a total preorder on the set of possible worlds with any belief set K, as
follows:1

Definition 1 ([18]). A faithful assignment is a function that maps each belief set
K to a total preorder �K onM such that for any possible worlds w1, w2:

1. If w1, w2 ∈ [K] then w1 ≈K w2

2. If w1 ∈ [K] and w2 6∈ [K], then w1 ≺K w2.

The resulting preorder is referred to as a faithful ranking associated with K. Intu-
itively, w1 �K w2 if w1 is at least as plausible as w2. Katsuno and Mendelzon then
provide the following representation result, where t(W ) is the set of formulas of
classical logic true in the set of possible worlds W :

1In fact, Katsuno and Mendelzon deal with formulas instead of belief sets. Since we deal with
finite languages only, the difference is immaterial. We use belief sets in order to adhere more
closely to the original AGM approach.
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Theorem 1 ([18]). A revision operator * satisfies postulates (K*1) – (K*8) iff
there exists a faithful assignment that maps each belief set K to a total preorder
�K such that

K ∗ φ = t(min([φ],�K)).

Thus the revision of K by φ is characterised by those models of φ that are most
plausible according to the agent. Given that we are working with a finite language,
this construction is in fact equivalent to the earlier system of spheres approach due
to Grove [17]. It is easier to present our results in terms of faithful assignments,
and so we do so here.

Another form of belief change in the AGM approach is belief contraction, in
which an agent’s beliefs decrease. Thus in the contraction of φ from K, written
K − φ, one has φ 6∈ K − φ ⊆ K, while ¬φ is not necessarily believed. There
are two primary means of constructing contraction functions. Using remainder
sets, a contraction K − φ is defined in terms of maximal subsets of K that fail to
imply φ. Via epistemic entrenchment, an ordering is defined on sentences of K,
and a contraction K − φ is (roughly) defined in terms of the most entrenched set
of sentences that does not imply φ. Of interest, and pertinent to the approach at
hand, these various constructions are all in a certain sense interdefinable, as are
revision and contraction functions. Hence, given a contraction function −, one
may define a revision function by the so-called Levi identity:

K ∗ φ = (K − ¬φ) +PC φ. (1)

See [16, 25] for details.

3.2. Related Work

Earlier work on belief change involving Horn formulas dealt with the Horn
fragment of a propositional theory, rather than Horn clause belief change as a dis-
tinct phenomenon. For example, the complexity of specific approaches to revising
knowledge bases is addressed by Eiter and Gottlob [14], including the case where
the knowledge base and formula for revision are Horn formulas. Liberatore [20]
considers the problem of compact representation for revision in the Horn case.
Given a knowledge base K and formula φ, both Horn, the main problem con-
sidered is whether a revised knowledge base can be expressed by a propositional
formula whose size is polynomial with respect to the sizes of K and φ. More
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recently, belief revision in other fragments of propositional logic, including Krom
and affine formulas, has been addressed in [6].

Langlois et al. [19] approach the study of revising Horn formulas by character-
izing the existence of a complement of a Horn consequence; such a complement
corresponds to the result of a contraction operator. This work may be seen as a
specific instance of a general framework developed by Flouris et al. [15].

The main difference between our work and the above approaches to revision,
is that in our approach revision functions always produce Horn theories (they are
postulated to do so). This of course adds an extra burden to the revision process
since it now needs to comply with both the principle of minimal change (see [16,
25]), and the requirement to produce Horn theories (which in this context can
be seen as an instance of the principle of categorical matching). Our results show
that, with some adjustments to the original AGM framework, this double objective
can indeed be achieved.

With respect to AGM-style belief change in Horn theories, most work has fo-
cussed on Horn contraction. Delgrande [12] addresses maxichoice belief contrac-
tion in Horn clause theories, where contraction is defined in terms of remainder
sets. Booth et al. [2] generalise this to so-called infra-remainder sets, while Del-
grande and Wassermann [11] link Horn contraction to AGM contraction via weak
remainder sets. In a series of papers, Zhuang and Pagnucco [29, 30, 31] and Booth
et al. [3] further explore Horn contraction by considering other constructions in-
cluding epistemic entrenchment, partial meet, and kernel contraction. Zhuang et
al. [32] present a technique for obtaining a Horn revision in terms of contraction.
The difficulty in any approach to defining Horn revision in terms of contraction
is that one must deal with the negation of a Horn formula which, in general, is
not Horn. Zhuang et al. circumvent this difficulty by contracting by a sequence of
Horn strengthenings [28] of the negation of the formula for revision.

4. Horn Revision: Preliminary Considerations

4.1. Expressing Revision in the Context of Horn Theories

The postulates and semantic construction of Section 3.1 are easily adapted to
Horn theories. For the postulates, we have the following, expressed in terms of
Horn theories.
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An AGM (Horn) revision function ∗ is a function fromH×LH toH satisfying
the following postulates.

(H*1) H ∗ φ = CnH(H ∗ φ).

(H*2) φ ∈ H ∗ φ.

(H*3) H ∗ φ ⊆ H + φ.

(H*4) If ⊥ 6∈ H + φ then H + φ ⊆ H ∗ φ.

(H*5) If φ is consistent then ⊥ 6∈ H ∗ φ.

(H*6) If ψ ≡ φ then H ∗ ψ = H ∗ φ.

(H*7) H ∗ (ψ ∧ φ) ⊆ (H ∗ ψ) + φ.

(H*8) If ⊥ 6∈ (H ∗ ψ) + φ then (H ∗ ψ) + φ ⊆ H ∗ (ψ ∧ φ).

As well, faithful assignments can be defined for the Horn case, basically by
changing notation:

Definition 2. A faithful assignment is a function that maps each Horn theory H
to a total preorder �H onM such that for any possible worlds w1, w2:

1. If w1, w2 ∈ [H] then w1 ≈H w2

2. If w1 ∈ [H] and w2 6∈ [H], then w1 ≺H w2.

The resulting preorder is referred to as the faithful ranking associated with H .
Finally, one can define a function ∗ in terms of a faithful ranking by:

H ∗ φ = tH(min([φ],�H)). (2)

The use of ∗ in Equation 2 is suggestive; ideally one would next establish a cor-
respondence between functions that satisfy the postulates and those that can be
specified via Equation 2. However, there are significant difficulties in immedi-
ately establishing such a representation result. We review these problems next,
and then present our solution in the following section.
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4.2. Problems with Naı̈ve AGM Horn Revision

While Horn revision is naturally expressible in terms of the (Horn) AGM pos-
tulates on the one hand, and faithful assignments on the other, it is perhaps not
surprising that results differ from revision with respect to classical logic. Below
we review some issues that arise, ranging from the inconvenient to the highly
problematic.

1. Interdefinability results do not hold in Horn belief change. As mentioned in
Section 3.1, in the AGM approach revision may be defined in terms of contraction
via the Levi Identity (1). However, previous work [10] suggests that Horn contrac-
tion is unsuitable for specifying a revision operator. As well, if one considers the
Levi Identity, revision by a Horn formula φ is defined in terms of the contraction
by ¬φ. Since φ is a conjunction of Horn clauses, ¬φ in general will not be Horn,
and so the Levi identity would seem to be inapplicable for Horn theories.2

These points are not definitive (there is, after all, no formal result stating an
impossibility of interdefinability of Horn contraction and revision), but they do
suggest the overall difficulty in obtaining such a result. Consequently, we focus
on a direct definition of Horn revision, in terms of ranking functions, in the next
section. Having developed such an approach, we then suggest that the relation
between Horn contraction and revision is a suitable and interesting topic for future
research.

2. Distinct faithful rankings may yield the same revision function. Consider the
Horn language defined by P = {p, q}, and the following three total preorders:

pq ≺ pq ≺ pq ≺ pq (3)
pq ≺ pq ≺ pq ≺ pq (4)
pq ≺ pq ≺ pq ≈ pq (5)

It can be verified that if one defines revision via Equation 2, the three total pre-
orders yield the same Horn revision function. In particular, there is no way in
which the relative ranking of worlds pq and pq can be distinguished. This is be-
cause any Horn formula φ consistent with pq and pq is also consistent with pq

2Zhuang et al. [32] circumvent this difficulty by employing Horn strengthenings of a non-Horn
formula. However their approach to contraction is with respect to faithful orderings, and not the
more common approaches of remainder sets or epistemic entrenchment.
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(i.e. if pq, pq ∈ [φ] then pq ∈ [φ]). Hence for all Horn formulas φ, the minimal
φ-worlds are identical under all three preorders.

3. Postulates may not be satisfied in a faithful ranking. Consider the Horn lan-
guage with atoms P = {p, q, r} and the ranking:

pqr ≺ pqr ≈ pqr ≺ pqr ≺ pqr ≺ all other worlds (6)

The agent’s belief set H is given by CnH(p ∧ q ∧ r). Let µ be p ∧ q → ⊥ and φ
be ¬p ∧ ¬q. Defining ∗ as in Equation 2, it can be verified that:

H ∗ µ = CnH((p ∧ q → ⊥) ∧ ¬r).
(H ∗ µ) + φ = CnH(¬p ∧ ¬q ∧ ¬r).
H ∗ (µ ∧ φ) = CnH(¬p ∧ ¬q ∧ r).

Thus (H ∗ µ) + φ and H ∗ (µ ∧ φ) are not equivalent and violate both (H*7) and
(H*8).

Informally, the culprit is the set of worlds {pqr, pqr}. This set (as with the
previous problem) is not expressible by a Horn formula, since it is not closed
under intersection of (positive) atoms. It can be observed that the “missing” in-
terpretation is given by pqr, where in our ordering (6) we have pqr ≈ pqr ≺
pqr. The problem arises then because one may revise by a Horn formula (viz.
µ = p ∧ q → ⊥) that yields the set of minimal models {pqr, pqr}, but in produc-
ing the corresponding Horn theory tH({pqr, pqr}) = CnH((p ∧ q → ⊥) ∧ ¬r)), a
new non-minimal model pqr creeps in.3

4. There is a Horn AGM revision function satisfying (H*1) – (H*8) that cannot
be modelled by a preorder on worlds. Consider the following pseudo-preorder on
worlds:

3As a sublety, this doesn’t imply that, when we come to define our appraoch, an equivalently-
ranked set of worlds must be definable by a Horn formula. For example (5) contains a set of worlds
that isn’t definable by a Horn formula. However, in our approach this ranking will prove to be an
acceptable ordering on worlds.
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Figure 1: Pseudo-preorder that induces function satisfying (H*1) - (H*8).

That is, the most preferred world is pqr, followed by pqr, pqr, pqr which form
a cycle (i.e. pqr ≺ pqr ≺ pqr ≺ pqr), followed by the sequence of worlds
pqr ≺ pqr ≺ pqr ≺ pqr.

Clearly, ≺ is not transitive and therefore is not a preorder. Nevertheless, we
can still use Definition 2 to induce a function ∗ from ≺. Perhaps surprisingly, ∗
satisfies all eight postulates (H*1) – (H*8).

Proposition 1. The function ∗ induced via Definition 2 from the binary relation
≺ of Figure 1 satisfies (H*1) – (H*8).

Proof. Postulates (H*1), (H*2), (H*3), (H*4), and (H*6) follow trivially from
Definition 2. For (H*5), it suffices to show that any nonempty set of worlds S
which is closed under intersection (and therefore is definable by a Horn formula),
has a minimal element with respect to the pseudo-preorder ≺. If S is a subset of
M−{pqr} this is indeed the case since, as it can be easily observed, the restriction
of ≺ toM−{pqr} is a total preorder (the problematic cycle pqr ≺ pqr ≺ pqr ≺
pqr is no longer present). In fact, the restriction of ≺ toM− {pqr} is not only
a total preorder; it is a linear preorder, and therefore if S ⊆ M − {pqr}, S
has a unique minimal element. The same of course is true in the case where
S ⊆ M − {pqr} or S ⊆ M − {pqr}. This leaves us with the case where
{pqr, pqr, pqr} ⊆ S. Recall that we are only interested in sets S that are closed
under intersection, since only for such sets is there a Horn formula φ such that
[φ] = S. Notice however that if S is closed under intersection, and all three
worlds pqr, pqr, and pqr belong to S, then pqr also belongs to S and therefore,
by the definition of ≺, pqr is the (unique) minimal element of S. Hence we have
shown that any nonempty, closed under intersection, set of worlds S has a (unique)
minimal element with respect to ≺. From this, (H*5) trivially follows.
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For (H*7) and (H*8), consider any two Horn formulas φ, ψ. If φ is inconsistent
with CnH(pqr) ∗ ψ then (H*7) and (H*8) are trivially true. Assume therefore
that φ is consistent with CnH(pqr) ∗ ψ, or equivalently with tH(min([ψ],≺)).
Moreover, notice that min([ψ],≺) is a singleton4. Hence from our assumption
that φ is consistent with tH(min([ψ],≺) it follows that the unique minimal ψ-
world also satisfies φ. Therefore min([ψ],≺) = min([ψ∧φ],≺) and consequently
(CnH(pqr) ∗ ψ) + φ = CnH(pqr) ∗ ψ = CnH(pqr) ∗ (ψ ∧ φ). Thus (H*7) and
(H*8) are true. 2

Although (H*1) – (H*8) are satisfied by a function induced from a non-preorder,
the connection between the postulates and total preorders can still be rescued if
we can find another binary relation ≺′, different from ≺, that also induces ∗ via
Definition 2 and which is a total preorder. It turns out though that this is not the
case.

Proposition 2. Let ∗ be the function induced via Definition 2 from the binary re-
lation ≺ of Figure 1. Every binary relation �′ that also induces ∗ via Definition 2
contains the cycle pqr ≺′ pqr ≺′ pqr ≺′ pqr.

Proof. Let �′ be a binary relation that induced ∗ via Definition 2. From
Figure 1 it follows that Cn(pqr) ∗ p = Cn(pqr) and consequently, pqr ≺′ pqr.
Similarly, Cn(pqr) ∗ r = Cn(pqr) and therefore pqr ≺′ pqr. Finally, from
Cn(pqr) ∗ q = Cn(pqr) we derive pqr ≺′ pqr. Hence we obtain the cycle
pqr ≺′ pqr ≺′ pqr ≺′ pqr. 2

5. Horn Revision: The Approach

As is clear from the previous discussion, there are substantial differences be-
tween classical AGM revision and Horn revision. These differences come about
from the weakened expressibility of Horn clause theories.

Consider again the issues discussed in the previous section. The first issue
isn’t a problem with Horn revision per se. Rather, it suggests that, when we look
at Horn theories, belief change operators are not interdefinable, or at best are not

4As argued above, every nonnempty, closed under intersection, set of worlds S – like [ψ] – has
a unique minimal world
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readily interdefinable. The second issue also isn’t a problem as such. Instead, it
indicates that a ranking may be underconstrained by a revision function.

The third issue, that a ranking may violate the postulates (H*7) and (H*8), is
indeed a problem. As discussed, the difficulty essentially is that some orderings
are unsuitable with respect to Horn revision. The solution then is to add a con-
straint to faithful orderings such that these “unsuitable orderings” are ruled out.
This is covered by the notion of Horn compliance, defined below.

As the fourth problem demonstrates, the Horn AGM postulates may fail to rule
out undesirable relations on sets of worlds, which is to say, the postulate set is too
weak to eliminate certain undesirable non-preorders. This then requires adding an
additional postulate, which we call (Acyc), to the postulate set (H*1) – (H*8) to
(semantically) further constrain the set of allowable orderings.

5.1. Initial Considerations

In accordance with the previous discussion, on the one hand we add a condi-
tion to restrict rankings on worlds; on the other hand we add a postulate to the set
of Horn AGM postulates.

On the semantic side, we restrict rankings to those that yield coherent results
with respect to Horn revision. That is, we want to allow only those orderings
where revision by a Horn formula will yield a set of worlds corresponding to a
Horn formula. Call a set of worlds W Horn elementary iff it is definable via a
Horn formula, i.e. if there is a Horn formula φ such that W = [φ]. So W is Horn
elementary iff W = Cl∩(W ). A preorder �H is Horn compliant iff for every
formula φ ∈ LH , min([φ],�H) is Horn elementary.

For example, the preorder in (5) is Horn compliant. Note that, while the set
{pq, pq} is not Horn elementary, there is no Horn formula φ over P = {p, q} such
that min([φ],�H) = {pq, pq}. On the other hand, the ordering in (6) is not Horn
compliant since min([p∧ q → ⊥],�H) = {pqr, pqr}, and {pqr, pqr} is not Horn
elementary.

With respect to postulates, we want to rule out pseudo-preorders such as is
shown in Figure 1. This problem does not arise in standard AGM revision due
to the expressivity of classical propositional logic. A (very) informal argument
is as follows: Consider where we are given a function that satisfies the AGM
postulates, and we wish to construct a corresponding faithful ordering. In a finite
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language (which is what is assumed in the Katsuno and Mendelzon approach) it is
straightforward to determine the relative position of two possible worlds, w1 and
w2: Simply determine the result of revising by a formula with models given by
{w1, w2}. If the result corresponds to (the literals in) w1 then one has w1 ≺ w2; if
the result corresponds to w2 then w2 ≺ w1; otherwise w1 ≈ w2. This breaks down
in the Horn case because the formula corresponding to {w1, w2} will in general
not be Horn.

However, it proves to be the case that we can still rule out pseudo-preorders
such as given in Figure 1. That is, our language is expressive enough to enforce
the condition that, if there is a � cycle among possible worlds, then none of the
� relations can be strict. Or, in other words, every � cycle is in fact a ≈ cycle.
This then proves sufficient (after some more work) to construct a total preorder
that captures a specific revision function. To this end, we introduce the following
schema:

(Acyc) If for 0 ≤ i < n we have (H ∗µi+1) +µi 6` ⊥, and (H ∗µ0) +µn 6` ⊥,
then (H ∗ µn) + µ0 6` ⊥.

Informally, (Acyc) rules out cycles (of any length n) as found for example in
Figure 1. To see this, consider the instance of (Acyc) for n = 2:

If (H ∗ µ1) + µ0 6` ⊥ and
(H ∗ µ2) + µ1 6` ⊥ and
(H ∗ µ0) + µ2 6` ⊥

then
(H ∗ µ2) + µ0 6` ⊥.

If revision is defined via Definition 2 and Equation 2, then (H ∗ µ1) + µ0 6` ⊥ iff
min([µ1],�H) ∩ [µ0] 6= ∅. This last relation implies that, for w1 ∈ min([µ1],�H)
and w0 ∈ min([µ0],�H) it must be that w0 �H w1. Consequently, the postulate
can then be read as requiring that if w0 �H w1 �H w2 �H w0 then w0 �H w2,
and with some further deliberation, w0 ≈H w1 ≈H w2 (thus ruling out the pseudo-
preorder of Figure 1).

We note that in the presence of the AGM postulates, (Acyc) is redundant for
any underlying language/logic that contains classical propositional logic:
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Proposition 3. If the underlying language/logic contains classical propositional
logic, then (Acyc) is derivable from the AGM postulates (K*1) – (K*8).

Proof. Assume that the underlying language L and the entailment relationship
` contain classical propositional logic. Let K be a theory of L. We prove (Acyc)
by induction on n.

If n = 1, (Acyc) is trivially true.

Assume that (Acyc) holds for all n ≤ k.

Consider now any sequence of sentences µ0, µ1, . . ., µk, µk+1, such that:

(K ∗ µ1) + µ0 6` ⊥
(K ∗ µ2) + µ1 6` ⊥

...
(K ∗ µk+1) + µk 6` ⊥

(K ∗ µ0) + µk+1 6` ⊥

From (K∗µ2)+µ1 6` ⊥we derive, via the AGM postulates, thatK∗(µ1∨µ2) ⊆
K ∗ µ1 (refer to properties (3.15) and (3.16) in [16]). Moreover, from (K ∗ µ1) +
µ0 6` ⊥ it follows that ¬µ0 6∈ K ∗ µ1. Consequently, K ∗ (µ1 ∨ µ2) + µ0 6` ⊥.
Finally, from (K ∗ µ3) + µ2 6` ⊥ we conclude that (K ∗ µ3) + (µ1 ∨ µ2) 6` ⊥.
Hence,

(K ∗ (µ1 ∨ µ2)) + µ0 6` ⊥
(K ∗ µ3) + (µ1 ∨ µ2) 6` ⊥

(K ∗ µ4) + µ3 6` ⊥
...

(K ∗ µk+1) + µk 6` ⊥

(K ∗ µ0) + µk+1 6` ⊥

From the induction hypothesis we then derive (K ∗µk+1)+µ0 6` ⊥ as desired.
2
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Figure 2: Pseudo-preorder that induces function satisfying (H*1) - (H*8) and (Acyc).

While, as Proposition 3 shows, (Acyc) follows from the AGM postulates in
a classical setting, when we restrict the underlying language to Horn formulas,
(Acyc) becomes independent from the corresponding postulates (H*1) – (H*8).
Figure 1 suffices to show this: Defining revision according to Definition 2 yields a
revision function that satisfies (H*1) – (H*8) (see Proposition 1) and yet violates
(Acyc) (simply consider the revisions by the Horn formulas µ0 = r, µ1 = q, and
µ2 = p).

Corollary 1. If the underlying language/logic is Horn, then (Acyc) is independent
of the (modified) AGM postulates (H*1) – (H*8).

Finally, we note that while (Acyc) does indeed rule out undesirable orderings
such as that given in Figure 1, nonetheless there are pseudo-orderings that satisfy
(Acyc) along with the postulates (H*1) – (H*8). For example, consider Figure 2.5

While this pseudo-preorder has the same structure as that in Figure 1, notably,
each world in the cycle contains two negated literals rather than one negated lit-
erals, as in Figure 1. It can be readily verified that the revision function induced
by the pseudo-preorder in Figure 2 satisfies postulates (H*1) – (H*8) and (Acyc);
we omit the details.

This is not problematic for the approach, for the following reasons. In Fig-
ure 1, the binary relation ≺ induces a revision function ∗ such that every binary
relation that induces ∗ also contains the undesirable ≺-cycle. In Figure 2, this is

5We thank Adrian Haret and Stefan Woltran for pointing out this example to us.
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not the case. The pseudo-preorder shown in Figure 2 induces a revision function
∗′ satisfying (H*1) – (H*8) and (Acyc), but in this case there is a (non-pseudo)
total preorder that also induces ∗′ (simply erase any one of the three inequalities
in the cycle). In fact, the “completeness” part of the representation result given in
Theorem 3 shows how to construct such a satisfying preorder in the general case.

5.2. A Representation Result

The notion of Horn compliance on the one hand, and the postulate (Acyc) on
the other, prove to be sufficient to extend the AGM approach to capture revision
in Horn theories. We obtain the following results:

Theorem 2. Let H be a Horn belief set and � a Horn compliant faithful ranking
associated with H . Define an operator ∗ : H×LH 7→ H by

H ∗ φ = tH(min([φ],�)).

Then ∗ satisfies postulates (H*1) – (H*8) and (Acyc).

Proof. The proof is much the same as for classical AGM revision. Postulates
(H*1), (H*2), and (H*6) follow immediately from the definition of ∗. For (H*3)
and (H*4), if φ is inconsistent with H , then both postulates are trivially satisfied.
If on the other hand φ is consistent with H , then from � being faithful, we derive
that min([φ],�) = [H] ∩ [φ], and therefore (H*3) and (H*4) are satisfied.

For (H*5), assume that φ is consistent. Then clearly, since � is a finite total
preorder, min([φ],�) 6= ∅. Consequently, ⊥ 6∈ tH(min([φ],�)) and therefore
⊥ 6∈ H ∗ φ.

For (H*7) and (H*8), if φ is inconsistent with H ∗ ψ, then both postulates are
trivially satisfied. Assume therefore that φ is consistent with H ∗ ψ. This entails,
since � is Horn compliant, that [φ] ∩min([ψ],�) 6= ∅. Hence min([φ ∧ ψ],�) =
[φ]∩min([ψ],�) 6= ∅ and consequently, H ∗ (φ∧ψ) = (H ∗ψ) +φ. Thus (H*7)
and (H*8) are satisfied.

For (Acyc), let µ0, µ1, . . . µn, be a sequence of Horn formulas such that,
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(H ∗ µ1) + µ0 6` ⊥
(H ∗ µ2) + µ1 6` ⊥

...
(H ∗ µn) + µn−1 6` ⊥

(H ∗ µ0) + µn 6` ⊥

From (H ∗ µ1) + µ0 6` ⊥ it follows that [µ0] ∩ [tH(min([µ1],�))] 6= ∅. More-
over, since� is Horn compliant, it follows that [tH(min([µ1],�))] = min([µ1],�).
Hence we derive that [µ0] ∩min([µ1],�) 6= ∅, and therefore there is a µ0-world,
call it w′0, such that w′0 � w1, for all w1 ∈ [µ1]. Similarly, from (H ∗µ2)+µ1 6` ⊥
we conclude that there is a w′1 ∈ [µ1] such that w′1 � w2, for all w2 ∈ [µ2],
. . ., and from (H ∗ µn) + µn−1 6` ⊥ we conclude that there is a w′n−1 ∈ [µn−1]
such that w′n−1 � wn, for all wn ∈ [µn]. Then, from transitivity we then derive
that w′0 � wn, for all wn ∈ [µn]. Finally, from (H ∗ µ0) + µn 6` ⊥ it follows
that there is a minimal µ0-world, call it w′′0 , that satisfies µn. Moreover, from
w′′0 � w′0 � wn (for all wn ∈ [µn]), it follows that w′′0 is also a minimal µn-world;
i.e. w′′0 ∈ min([µn],�). Since min([µn],�) contains a µ0-world, it follows that
µ0 is consistent with H ∗ µn as desired. 2

Theorem 3. Let ∗ : H × LH 7→ H be a function satisfying postulates (H*1) –
(H*8) and (Acyc). Then for fixed theory H , there is a faithful ranking � onM
such that � is Horn compliant and H ∗ φ = tH(min([φ],�)).

Proof. LetH be a Horn belief set. We shall progressively construct the preorder�
alluded to in the statement of Theorem 3. First we define, using H and ∗, a binary
relation �′ in M for which we show that [H ∗ µ] = min([µ],�′) for all Horn
formulas µ. In general, �′ is neither transitive nor total (although it is reflexive).
The transitive closure of �′, denoted �∗, is of course a preorder, but in general it
is not total. We therefore construct an extension of �∗, denoted �, which is total
and moreover preserves the minimal µ-worlds (as defined with respect to �′), for
all Horn formulas µ. The total preorder � is shown to be the desired preorder.

In progressing from�′ to� we shall prove a number of supplementary results
that will help us establish the main line of the argument.

First some extra notation and terminology. For any two worlds w1, w2, we
shall denote by φ(w1, w2) a Horn formula such that [φ(w1, w2)] = {w1, w2, w1 ∩
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w2}.6 We define the binary relation �′ inM as follows (using infix notation):

w1 �′ w2 iff w1 ∈ [H ∗ φ(w1, w2)].

As usual,≺′ denotes the strict part of�′; i.e. w1 ≺′ w2 iff w1 �′ w2 and w2 6�′
w1. Moreover, for any set of worlds V , min(V,�′) is defined as in Section 2; i.e.
min(V,�′) = {w ∈ V | for all w′ ∈ V , if w′ �′ w then w �′ w′}.

Lemma 1. Let w1, w2 ∈ M be any two worlds such that w1 �′ w2.
Then for all Horn formulas µ, if w1 ∈ [µ] and w2 ∈ [H ∗ µ], then
w1 ∈ [H ∗ µ].

Proof. Let µ be any Horn formula µ such that w1 ∈ [µ], w2 ∈ [H ∗µ].
Then from (H*7) and (H*8) we derive that H ∗ (µ ∧ φ(w1, w2)) =
(H ∗ µ) + φ(w1, w2). Moreover, from w2 ∈ [H ∗ µ] and (H*2) it
follows that w2 ∈ [µ]. Consequently, since µ is Horn, w1 ∩ w2 ∈ [µ],
and therefore [φ(w1, w2)] ⊆ [µ]. Postulate (H*6) then entails that
H ∗ (µ ∧ φ(w1, w2)) = H ∗ φ(w1, w2). Hence, H ∗ φ(w1, w2) = (H ∗
µ) + φ(w1, w2). This, together with w1 �′ w2, entails w1 ∈ [H ∗ µ].
2

Lemma 2. For all Horn formulas µ, min([µ],�′) = [H ∗ µ].

Proof.
LHS ⊆ RHS

Let µ ∈ LH be any Horn formula and assume towards a contradiction
that there is a w1 ∈ min([µ],�′) such that w1 6∈ [H ∗ µ]. From
w1 ∈ min([µ],�′) it follows that µ is consistent, and therefore, by
(H*5), [H ∗ µ] 6= ∅. Let w2 be any world in [H ∗ µ]. By Lemma 1,
we then derive that w1 6�′ w2. This again entails that w2 6�′ w1 (for
otherwise w1 wouldn’t be minimal in [µ]). Let us denote by w3 the
intersection of w1 and w2; i.e. w3 = w1 ∩ w2. From w1 6�′ w2 and

6Note that the set {w1, w2, w1∩w2} is closed under intersection and therefore there is always a
Horn formula φ such that [φ(w1, w2)] = {w1, w2, w1 ∩w2}. Moreover observe that in the limiting
case where w1 ⊆ w2 (or w2 ⊆ w1), the set {w1, w2, w1 ∩ w2} reduces to {w1, w2}.
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w2 6�′ w1 we derive, given (H*2) and (H*5), that [H ∗ φ(w1, w2)] =
{w3} and moreover, w3 ⊂ w1 and w3 ⊂ w2.

Since [H ∗ φ(w1, w2)] = {w3}, it follows that φ(w1, w3) is consis-
tent with H ∗ φ(w1, w2), and therefore, by (H*7) and (H*8), [H ∗
(φ(w1, w2) ∧ φ(w1, w3)] = [H ∗ (φ(w1, w2) + φ(w1, w3)] = {w3}.
Moreover, it is not hard to see that φ(w1, w3) ` φ(w1, w2), and there-
fore, by (H*6), H ∗ (φ(w1, w2) ∧ φ(w1, w3)) = H ∗ φ(w1, w3). Thus
[H ∗φ(w1, w3)] = {w3} and consequently, w3 ≺′ w1. Moreover, from
w1, w2 ∈ [µ], and since µ is Horn, it follows that w3 ∈ [µ]. This how-
ever contradicts our assumption that w1 is minimal in [µ] with respect
to �′.
RHS ⊆ LHS

Let µ ∈ LH be any Horn formula and let w1 be any world in [H ∗ µ].
We show that w1 �′ w2 for all w2 ∈ [µ]. Let w2 be any world in
[µ]. Clearly, since w1 ∈ [H ∗ µ], φ(w1, w2) is consistent with (H ∗
µ), and consequently, by (H*7) and (H*8), H ∗ (µ ∧ φ(w1, w2)) =
(H ∗ µ) + φ(w1, w2). On the other hand, since µ is Horn, the world
w3 = w1∩w2 also belongs to [µ], and therefore φ(w1, w2) ` µ. Hence
by (H*6), H ∗φ(w1, w2) =H ∗(µ∧φ(w1, w2)) = (H ∗µ)+φ(w1, w2).
Consequently, fromw1 ∈ [H∗µ] we derive thatw1 ∈ [H∗φ(w1, w2)],
and therefore, w1 �′ w2. Since w2 was chosen arbitrarily, it follows
that w1 ∈ min([µ],�′). 2

Lemma 3. If w1 �′ w2 �′ . . . �′ wn �′ w1 then w1 �′ wn.

Proof. If n = 1, the lemma is trivially true.

Let w1, w2, . . . , wn be any sequence of worlds, with n > 1, such that
w1 �′ w2 �′ . . . �′ wn �′ w1.

Then w1 ∈ [H ∗ φ(w1, w2)], w2 ∈ [H ∗ φ(w2, w3)], . . . , wn−1 ∈
[H ∗ φ(wn−1, wn)], and wn ∈ [H ∗ φ(w1, wn)]. Hence,

H ∗ φ(w2, w3) + φ(w1, w2) 6` ⊥
...

H ∗ φ(wn−1, wn) + φ(wn−2, wn−1) 6` ⊥
H ∗ φ(w1, wn) + φ(wn−1, wn) 6` ⊥

H ∗ φ(w1, w2) + φ(w1, wn) 6` ⊥
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Then by (Acyc) we derive that (H ∗ φ(w1, wn)) + φ(w1, w2) 6` ⊥.
Consequently, by (H*7) and (H*8), H ∗ (φ(w1, wn) ∧ φ(w1, w2)) =
(H ∗ φ(w1, wn)) + φ(w1, w2). Moreover, from (H ∗ φ(w1, w2)) +
φ(w1, wn) 6` ⊥ and (H*7) – (H*8) we derive H ∗ (φ(w1, wn) ∧
φ(w1, w2)) = (H ∗ φ(w1, w2)) + φ(w1, wn). Hence, from w1 �′ w2,
it follows that w1 ∈ [H ∗ (φ(w1, wn) ∧ φ(w1, w2))]. Consequently,
from H ∗ (φ(w1, wn)∧φ(w1, w2)) = (H ∗φ(w1, wn)) +φ(w1, w2) we
conclude that w1 ∈ [H ∗ (φ(w1, wn)], and therefore w1 �′ wn. 2

Let us now define �∗ to be the transitive closure of �′; i.e. w �∗ w′ iff there exist
worlds u1, . . . , un, such that w �′ u1 �′ · · · �′ un �′ w′. By construction, �∗ is
reflexive and transitive; i.e. �∗ is a partial preorder.

For a set of worlds S ⊆ M, we shall say that w is maximal in S with respect
to�∗ iff w ∈ S, and for all w′ ∈ S, if w �∗ w′ then w′ �∗ w. We shall denote the
set of all maximal worlds in S (with respect to�∗) bymax(S,�∗). The following
auxiliary results establish some interesting properties of �∗:

Lemma 4. For any w,w′ ∈M, if w ≺′ w′ then w ≺∗ w′.
Proof. Let w,w′ ∈M be any two worlds such that w ≺′ w′. Assume
towards a contradiction that w′ �∗ w. Then there exist u1, . . . , un ∈
M such that w′ �′ u1 �′ · · · �′ un �′ w. Consequently, w′ �′ u1 �′
· · · �′ un �′ w ≺′ w′. This however contradicts Lemma 3. 2

Lemma 5. For every nonempty set of worlds S, max(S,�∗) 6= ∅.

Proof. Let S be any nonempty set of worlds. Assume towards a
contradiction that max(S,�∗) = ∅. Then for every world w ∈ S
there is a w′ ∈ S such that w ≺∗ w′. Hence, we can start with any
world w0 ∈ S, and build a sequence of worlds w0, w1, w2, . . . ∈ S,
such that, w0 ≺∗ w1 ≺∗ w2 ≺∗ . . .. Given that there are only finitely
many worlds, we will eventually reach a wj that also appears earlier
in the sequence; i.e. for some i < j, wi = wj . Hence we get a cycle
wi ≺∗ wi+1 ≺∗ . . . ≺∗ wi+k ≺∗ wi. From the definition of �∗ and
Lemma 3 we then derive that wi �′ wi+k. Consequently, wi �∗ wi+k.
This of course contradicts wi+k ≺∗ wi. 2
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As mentioned in the beginning of the proof, the next step is to define an extension
of�∗ which is total, and preserves the µ-minimal worlds, for all Horn formulas µ.
To this end, consider the sequence of sets of worlds S0, S1, . . ., defined recursively
as follows:

S0 = max(M,�∗)
S1 = max(M− S0,�∗)

...
Si+1 = max(M−

⋃i
j=0 Sj,�∗)

...

Since there are finitely many worlds inM, from Lemma 5 we derive that the
sequence S0, S1, . . . will eventually reach the empty set, and will stay empty from
then onwards. We shall denote by m the index of the last nonempty set in the
sequence; i.e. Sm 6= ∅ and Sm+i = ∅ for all i ≥ 1. It is not hard to see that the sets
S0, . . . , Sm form a partition ofM. Based on this partition {Si}i∈[0,m], we finally
define the binary relation � ⊆M×M as follows:

w � w′ iff there are sets Si and Sj such that w ∈ Si, w′ ∈ Sj , and i ≥ j

Clearly, since {Si}i∈[0,m] is a partition of M, � is a total preorder. Also, it
is not hard to verify that � is an extension of �∗. More importantly however, as
shown by the following lemma, � preserves the µ-minimal worlds, for all Horn
formulas µ:

Lemma 6. For all Horn formulas µ, min([µ],�) = min([µ],�′).

Proof. Let µ be any Horn formula. If µ ` ⊥, then the lemma is
trivially true. Assume therefore that µ is consistent. Let Sk be the
last set in the sequence S0, . . . , Sm that intersects [µ]. It is not hard
to verify that min([µ],�) = Sk ∩ [µ]. Hence we need to show that
Sk ∩ [µ] = min([µ],�′).

LHS ⊆ RHS

Assume that w ∈ Sk ∩ [µ] and suppose towards a contradiction that
w 6∈ min([µ],�′). Then for some w0 ∈ [µ], w0 ≺′ w. Lemma 4 then
entails that w0 ≺∗ w. Then, w0 is not maximal (with respect to �∗)
in any set containing w, including of course Sk. Moreover, since Sk
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is the last set in the sequence S0, . . . , Sm that intersects [µ], it follows
that w0 ∈ Sj for some j < k. Hence w0 is maximal (with respect to
�∗) inM−

⋃j−1
i=0 Si, and therefore, since w0 ≺′ w, we conclude that

w 6∈ M−
⋃j−1
i=0 Si. This however contradicts w ∈ Sk and k > j.

RHS ⊆ LHS

Assume that w0 ∈ min([µ],�′) and suppose towards a contradiction
that w0 6∈ Sk ∩ [µ]. Then, clearly, w0 ∈ [µ] and w0 6∈ Sk. Moreover,
since Sk is the last set in the sequence S0, . . . , Sm intersecting [µ], it
follows that w0 ∈ Sj for some j < k. Let w1 be any world in Sk∩ [µ].
Since j < k we derive that w1 ∈ M −

⋃j−1
i=0 Si, and since w0 is

maximal inM−
⋃j−1
i=0 Si, we have that w0 6≺∗ w1 and consequently,

by Lemma 4, w0 6≺′ w1. Next we show that w0 ∈ [H ∗ φ(w0, w1)].

Assume on the contrary that this is not the case. Then w0 6�′ w1, and
since w0 is minimal in [µ], we derive that w1 6�′ w0, which in turn
entails w1 6∈ [H ∗ φ(w0, w1)]. That is, neither w0 nor w1 belong to
[H ∗ φ(w0, w1)]. Let w2 be the world such that w2 = w0 ∩ w1. From
w0, w1 6∈ [H ∗ φ(w0, w1)], and given (H*2), (H*5), we derive that
[H ∗ φ(w0, w1)] = {w2}. Moreover it clearly follows that w2 ⊂ w0

and w2 ⊂ w1.

From [H ∗ φ(w0, w1)] = {w2} and postulates (H*7) and (H*8), we
derive thatH ∗(φ(w0, w1)∧φ(w0, w2)) = (H ∗φ(w0, w1))+φ(w0, w2)
= {w2}. Next observe that, since w2 = w0 ∩ w1, it follows that
φ(w0, w2) ` φ(w0, w1), and therefore, by (H*6), H ∗ (φ(w0, w1) ∧
φ(w1, w2)) = H ∗ φ(w0, w2). Consequently, [H ∗ φ(w0, w2)] = {w2},
and therefore w2 ≺′ w0. Recall however that µ is Horn, and there-
fore from w0, w1 ∈ [µ], it follows that w2 ∈ [µ], and consequently,
w2 ≺′ w0 contradicts the minimality of w0 in [µ]. Thus we have
shown that w0 ∈ [H ∗ φ(w0, w1)], and consequently, w0 �′ w1.

We are only one step away from reaching a contradiction and thus
proving the lemma. This final step is to show that w1 is maximal in
M−

⋃j−1
i=0 Si. Indeed, consider any world w3 ∈ M−

⋃j−1
i=0 Si, such

that w1 �∗ w3. Then, w0 �′ w1 �∗ w3 implies w0 �∗ w3. Since w0

is maximal inM−
⋃j−1
i=0 Si, we then derive that w3 �∗ w0. Hence

from w0 �′ w1 we conclude that w3 �∗ w1. Since w3 was chosen
arbitrarily, it follows that w1 is maximal inM−

⋃j−1
i=0 Si.
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This however makes w1 an element of Sj , and since j < k, we derive
a contradiction with w1 ∈ Sk. 2

We can now put all the pieces together to complete the proof of the theorem.
From Lemma 6 and Lemma 2 we have that the total preorder� is such that [H ∗µ]
= min([µ],�), for all Horn formulas µ. This makes � Horn compliant. Finally,
notice that � is also faithful with respect to H . Indeed, if H is inconsistent,
this is trivially the case. Assume therefore that H is consistent, and let p be any
propositional variable. By (H*3) and (H*4) we have that H ∗ (p → p) = H .
Hence, [H] = min([p→ p],�) = min(M,�). Hence � is faithful with respect to
H . 2

6. Iteration and Horn Belief Revision

The results of the previous section prove that the classical AGM postulates can
be recast in a Horn framework. In this section we show that this is also the case
for the Darwiche and Pearl postulates for iterated revision [8].

First a note on Horn compliance. It was shown in [31] that Horn compliance
is equivalent to the following condition:

(H�) If w ≈ w′ then (w ∩ w′) � w.

Condition (H�) says that whenever two worlds w and w′ are equidistant from the
start of a preorder�, then the worldw∩w′ resulting from their intersection cannot
appear later in the preorder. Zhuang and Pagnucco show that any preorder that
satisfies (H�) is Horn compliant, and conversely, every Horn compliant preorder
satisfies (H�). Observe that (H�) makes no reference to an input Horn formula
µ. It is therefore a useful characterization of Horn compliance that will be used
extensively in the rest of the article.

The postulates proposed by Darwiche and Pearl for iterated revision, call them
the DP postulates, are shown below.7

7We note that the symbol K in (DP1) – (DP4) denotes a belief state rather than a belief set (see
[8] for details). Although this is an important distinction, it will not affect the discussion herein
since we will be working with the semantic characterization of the DP postulates – see conditions
(IR1) – (IR4) below – rather than with the DP postulates themselves.
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(DP1) If φ ` ψ then (K ∗ ψ) ∗ φ = K ∗ φ.

(DP2) If φ ` ¬ψ then (K ∗ ψ) ∗ φ = K ∗ φ.

(DP3) If ψ ∈ K ∗ φ then ψ ∈ (K ∗ ψ) ∗ φ.

(DP4) If ¬ψ 6∈ K ∗ φ then ¬ψ 6∈ (K ∗ ψ) ∗ φ.

We recall that the DP postulates have been characterized by corresponding
restrictions on faithful rankings. In particular, let H be a belief set and � a faith-
ful ranking with respect to H . Moreover, let us denote by �µ the total preorder
assigned to the belief set H ∗ µ resulting from the revision of H by µ. In [8] it
was shown that the conditions (IR1) – (IR4) below characterize (DP1) – (DP4)
respectively:

(IR1) If w,w′ ∈ [µ] then w ≺µ w′ iff w ≺ w′.

(IR2) If w,w′ ∈ [¬µ] then w ≺µ w′ iff w ≺ w′.

(IR3) If w ∈ [µ] and w′ ∈ [¬µ] then w ≺ w′ entails w ≺µ w′.

(IR4) If w ∈ [µ] and w′ ∈ [¬µ] then w � w′ entails w �µ w′.

Thus to show that (DP1) – (DP4) are consistent with (H*1) – (H*8) and
(Acyc), it suffices to prove the following result:

Theorem 4. LetH be a Horn belief set, and� a Horn compliant, faithful ranking
with respect to H . Moreover, let ∗ be the Horn revision function induced from �
via Definition 2. For every Horn formula µ, there exists a Horn compliant, total
preorder �µ, that is faithful with respect to H ∗ µ, and such that (IR1) – (IR4) are
satisfied.

Proof. Let µ be any Horn formula. Consider first the case where µ is inconsis-
tent. Define �µ to be equal to �. Clearly, in this case �µ satisfies (IR1) – (IR4).
Moreover, since � is Horn compliant, so is �µ. Finally for faithfulness, since µ
is inconsistent, by (H*2), [H ∗ µ] = ∅ and therefore �µ is trivially faithful with
respect to H ∗ µ. Hence the theorem is true when µ is inconsistent.
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Assume now that µ is consistent. We define �µ as follows:

w �µ w′ iff w ∈ min([µ],�) or w � w′ and w′ 6∈ min([µ],�).

According to the above definition, to construct �µ, one starts with � and simply
places the minimal µ-worlds (with respect to �) at the beginning of the ranking;
everything else remains the same. We note that this construction is not new. It has
been proposed by Boutilier, [4, 5], in his treatment of iterated revision, and it is
known to satisfy (IR1) – (IR4) [8]. Moreover,�µ is clearly faithful with respect to
H∗µ. Finally for Horn compliance, letw,w′ be any two worlds such thatw ≈µ w′.
Since (H�) entails Horn compliance, it suffices to show that (w ∩ w′) �µ w.

We distinguish between two cases. First assume that w ∈ min([µ],�). From
w ≈µ w′ we derive that w′ ∈ min([µ],�). Since � is Horn compliant, this
entails that (w ∩ w′) ∈ min([µ],�), and therefore, by the construction of �µ,
(w ∩ w′) �µ w as desired.

Next assume that w 6∈ min([µ],�). Then, by construction, w′ also does not
belong to min([µ],�). Therefore from w ≈µ w′ we derive that w ≈ w′. Since �
is Horn compliant, by (H�) it follows that (w ∩ w′) � w. Consequently, since
w 6∈ min([µ],�), (w ∩ w′) �µ w. 2

7. Relevance and Horn Belief Revision

Apart from iteration, the notion of relevance was also not fully addressed by
the AGM postulates. It was as tackled later with the addition of a new axiom due
to Parikh [22]. In this section we shall examine the compatibility of Horn revision
with Parikh’s axiom for relevance.

In [22], Parikh argues that the following intuitive rule should be adhered to
during the revision of a theory H by a sentence φ: the beliefs inH that are not rel-
evant to φ should not be affected. To formally encode this rule, Parikh proposed a
new axiom, which in [23] was shown to be equivalent to the following condition:8

(R1) IfH = Cn(χ, ψ), Pχ∩Pψ = ∅, and φ ∈ Lχ, then (H ∗φ)∩Lχ =H∩Lχ.

8The format of axiom (R1) used herein is slightly different from that used in [23], but the two
are clearly equivalent. It should be noted that there are in fact two readings of Parikh’s axiom for
relevance, a weak version and a strong version (see [23] for a discussion). Herein we focus on the
weak version of Parikh’s axiom.
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Some explanations are due. For a sentence γ, by Pγ we denote the minimum
set of propositional variables in which γ can be expressed, and by Lγ we denote
the propositional language built over Pγ ∪ {⊥}.9 Moreover, by Lγ we denote the
propositional language built over (P − Pγ) ∪ {⊥}.

Condition (R1) essentially encodes the intuitive rule discussed earlier for the
special case of a “composite” belief set H: if H can be split into two disjoint parts
χ, ψ, and the new information φ belongs entirely to the minimum language of the
first part χ, then the second part is not affected by the revision of H by φ.

Condition (R1) was characterised semantically in [23] in terms of two con-
straints on faithful assignments named (Q1) and (Q2) . We shall use this charac-
terisation to prove the consistency between (R1) and (H1) - (H8), (Acyc). First
however we need some additional notation related to the difference between a
theory and a possible world.

Let H be a theory and let Q = {Q1, . . . , Qn} be a partition of the set P of
propositional variables; i.e.

⋃
Q = P , Qi 6= ∅, and Qi ∩Qj = ∅, for all 1 ≤ i 6=

j ≤ n. We say that Q = {Q1, . . . , Qn} is an H-splitting iff there exist sentences
φ1 ∈ LQ1 , . . . , φn ∈ LQn , such that H = Cn(φ1, . . ., φn).10 Parikh has shown
in [22] that for every theory H there is a unique finest H-splitting, i.e. one which
refines every other H-splitting.11

Consider now a world w and a theory H whose finest H-splitting is F . The
difference, Diff(H,w), between H and w is defined as follows [23]:

Diff(H,w) =
⋃
{Fi ∈ F | for some φ ∈ LFi , H |= φ and w |= ¬φ}

Observe that whenever H is not a complete theory, there can be two (or more)
distinct worlds with the same difference from H . Consider for example the Horn
theory H = Cn({p ↔ q, r ↔ u}), whose finest splitting is, clearly, the set F
= {{p, q}, {r, u}}. Then the worlds w1 = pqru and w2 = pqru have the same
difference from H; namely, Diff(H,w1) = Diff(H,w2) = {p, q}.

9It was shown in [22] that for a sentence γ, Pγ is unique.
10For a set of propositional variables Q, by LQ we denote the propositional language built from

Q and the special symbol ⊥.
11A partition Q′ refines another partition Q, iff for every Q′

i ∈ Q′ there is Qj ∈ Q, such that
Q′
i ⊆ Qj .
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Notice that w1, w2 have also another thing in common: they agree in all vari-
ables outside their difference from H . On the other hand, the worlds w3 = pqru
and w4 = pqru, which also have the same difference from H , namely {r, u}, dis-
agree on the variables outside {r, u}. Yet w3 and w4 agree on the variables inside
their (common) difference fromH . We call the first pair of worlds w1, w2 external
H-duals, and the second pair w3, w4, internal H-duals.

More precisely, given a theory H , two worlds w1, w2 are called external H-
duals iff Diff(H,w1) = Diff(H,w2) and for all x ∈ P − Diff(H,w1), w1 |= x iff
w2 |= x. Moreover, two worlds w1, w2 are called internal H-duals iff Diff(H,w1)
= Diff(H,w2) and for all x ∈ Diff(H,w1), w1 |= x iff w2 |= x. See [23] for a
discussion on internal and external duals.

The final notion that we need to recall from [23] is that of a cover. Given a
theory H and any three worlds w1, w2, w3, we say that w3 is an w2-cover of w1 iff
Diff(H,w1) ⊂ Diff(H,w2), w1 and w3 are external H-duals, and moreover, for all
x ∈ Diff(H,w1), w3 |= x iff w2 |= x.

To give an example of a cover, consider again the theory H = Cn({p ↔ q,
r ↔ u}), and let w1, w2, w3 be the worlds w1 = pqru, w2 = pqru, and w3 =
pqru. Clearly w1 and w3 are external H-duals. Moreover, Diff(H,w1) = {p, q},
Diff(H,w2) = {p, q, r, u}, and therefore Diff(H,w1) ⊂ Diff(H,w2). Finally no-
tice that w3 agrees with w2 on the values of p, q. Hence w3 is an w2-cover of w1.
Refer to [23] for a discussion on the notion of a cover.

It was shown in [23] that for a theory H and a total preorder � that is faithful
with respect to H , the revision function ∗ induced from � satisfies (R1) iff �
satisfies the following two conditions:12

(Q1) If Diff(H,w1) ⊂ Diff(H,w2) then there is a world w3 that is a w2-cover
of w1, such that w3 ≺ w2.

(Q2) If w1 and w2 are internal H-duals, then w1 ≈ w2.

With the aid of this characterisation of (R1), Theorem 5 below shows that
Parikh’s axiom for relevance is consistent with Horn revision:

12To be precise, the representation result in [23] is expressed in terms of systems of spheres, but
it can be easily translated in terms of faithful total preorders as presented herein.
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Theorem 5. Let H be a consistent Horn theory. There exists a revision function
∗ that at H satisfies all the postulates (H*1) – (H*8), (Acyc), and (R1).

Proof. To prove the theorem it suffices to construct a total preorder �, satis-
fying (H�), (Q1) – (Q2), and such that min(M,�) = [H]. We construct � with
the aid of an auxiliary preorder order� defined below.

Let F be the (unique) finest H-splitting, and let F1 . . . Fk be an enumeration
of the elements of F . For a world w, let us denote by ∆(H,w) the elements of F
that are contained in Diff(H,w); i.e.

∆(H,w) = {Fi ∈ F | Fi ⊆ Diff(H,w)}.

Let us call the set ∆(H,w) the disparity of w from H . Finally, let p1, . . . , pm
be an enumeration of the propositional variables in P .

We define� to be the following binary relation inM:

w1 � w2 iff:

(a) |∆(H,w1)| < |∆(H,w2)|, or

(b) |∆(H,w1)| = |∆(H,w2)|, and for some 1 ≤ i ≤ k, {F1, . . . , Fi−1} ⊆
∆(H,w1) ∩∆(H,w2), Fi ∈ ∆(H,w1), and Fi 6∈ ∆(H,w2), or

(c) Diff(H,w1) = Diff(H,w2), and for some 1 ≤ i ≤ n, {p1, . . . , pi−1} ⊆
w1 ∩ w2 ∩ Diff(H,w1), pi ∈ Diff(H,w1), pi ∈ w1, and pi 6∈ w2.

Intuitively the above definition works in three steps as follows: first worlds
are ordered according to the cardinality of their disparity from H (condition (a)).
Then, worlds with the same cardinality of disparity are ordered lexicographically
wrt the enumeration F1 . . . Fk (condition (b)). Finally, worlds with exactly the
same disparity are ordered lexicographically wrt the enumeration p1 . . . pn (con-
dition (c)).

From the definition of � it follows immediately that � is irreflexive. Next
we show that� is also transitive.

Let w1, w2, w3 be any three worlds such that w1 � w2 � w3. By the def-
inition of � it follows that |∆(H,w1)| ≤ |∆(H,w2)| ≤ |∆(H,w3)|. Hence,
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if |∆(H,w1)| < |∆(H,w2)| or |∆(H,w2)| < |∆(H,w3)| then |∆(H,w1)| <
|∆(H,w3)| and consequently w1 � w3 as desired. Hence assume that |∆(H,w1)|
= |∆(H,w2)| = |∆(H,w3)|. We need to examine four cases depending on which
of the conditions (b) or (c) are satisfied by the two pair of worlds w1, w2, and
w2, w3.

For the first case assume that both pairs of worlds satisfy (b); i.e. ∆(H,w1) 6=
∆(H,w2), ∆(H,w2) 6= ∆(H,w3), the first Fi ∈ F in which ∆(H,w1) and
∆(H,w2) differ belongs to ∆(H,w1), and the first Fj ∈ F in which ∆(H,w2) and
∆(H,w3) differ belongs to ∆(H,w2). Since Fi 6∈ ∆(H,w2) and Fj ∈ ∆(H,w2),
clearly i 6= j. If j < i, then Fj is also the first member of F in which ∆(H,w1)
and ∆(H,w3) differ and moreover Fj ∈ w1; hence w1 < w3 as desired. If on
the other hand i < j, then from Fi 6∈ ∆(H,w2) it follows that Fi 6∈ ∆(H,w3),
and therefore Fi is the first member of F in which ∆(H,w1) and ∆(H,w3) differ.
Given that Fi ∈ ∆(H,w1) we once again derive that w1 � w3 as desired.

For the second case, assume that w1, w2 satisfy (b), and w2, w3 satisfy (c). Let
Fi be the first member of F in which ∆(H,w1) and ∆(H,w2) differ. Then since
∆(H,w2) = ∆(H,w3), it follows that the first member of F in which ∆(H,w1)
and ∆(H,w3) differ is also Fi, which moreover it belongs to ∆(H,w1). Hence
w1 � w3 as desired.

For the third case, assume that w1, w2 satisfy (c), and w2, w3 satisfy (b). Let
Fi be the first member of F in which ∆(H,w2) and ∆(H,w3) differ. Then since
∆(H,w1) = ∆(H,w2), it follows that the first member of F in which ∆(H,w1)
and ∆(H,w3) differ is also Fi, which moreover it belongs to ∆(H,w1). Hence,
once again, w1 � w3 as desired.

Finally for the forth case assume that both pairs of worlds satisfy (c). Then
Diff(H,w1) = Diff(H,w2) = Diff(H,w3). Let pi be the first variable in Diff(H,w1)
that has a different value in w1 and w2, and let pj be the first value in Diff(H,w2)
that has a different value in w2 and w3. From w1 � w2 � w3 we have that
pi ∈ w1, pi 6∈ w2, pj ∈ w2, and pj 6∈ w3. Clearly then i 6= j. If i < j, then it is
not hard to see that pi is the first variable in Diff(H,w1) that has a different value
in w1 and w3. Hence from pi ∈ w1 it follows that w1 � w3. If on the other hand
j < i then given that, up to pi, w1 agrees with w2 (within Diff(H,w1)), it follows
that pj is the first variable in Diff(H,w1) that has a different value in w1 and w3,
and moreover pj ∈ w1. Once again we then derive that w1 � w3.

This concludes the proof of the transitivity of �. Transitivity together with
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irreflexivity entail that� is acyclic.

Next we define recursively the sequence S0, S1, . . . of sets of worlds as fol-
lows:

S0 = {w ∈M : for all w′ ∈M, w′ 6� w}.
S1 = {w ∈ (M− S0) : for all w′ ∈ (M− S0), w

′ 6� w}.
...

Si+1 = {w ∈ (M−
⋃i
j=0 Sj) : for all w′ ∈ (M−

⋃i
j=0 Sj), w

′ 6� w}.
...

A few words about the above sequence before we proceed with the definition
of �.

Clearly by construction, the sets in the above sequence are pairwise disjoint.
Moreover, since � is acyclic, it follows that for any nonempty set of worlds Q,
the set {w ∈ Q: for all w′ ∈ Q, w′ 6� w} is also nonempty. This again entails
that there is an m ∈ ℵ such that for all 0 ≤ i ≤ m, Si 6= ∅ and

⋃m
j=0 Sj =M. In

other words, {S0, . . . , Sm} is a partition ofM; we shall call the elements of this
partition cells.

Next we show that S0 = [H]. Since H is assumed to be consistent, then
[H] 6= ∅. Let w1 by any world in [H]. Clearly Diff(H,w1) = ∅ and therefore by
the definition of� there is no world w2 such that w2 � w1; hence [H] ⊆ S0. For
the converse let w2 be any world inM− [H]. Then Diff(H,w2) 6= ∅ and therefore
∅ = |∆(H,w1)| < |∆(H,w2)| for any w1 ∈ [H]. This again entails w1 � w2 and
consequently w2 6∈ S0. Hence S0 ⊆ [H] as desired.

We can now define the preorder � alluded in the beginning of the proof as
follows:

w1 � w2 iff for some 0 ≤ i, j ≤ m,w1 ∈ Si, w2 ∈ Sj, and i ≤ j.

Since {S0, . . . , Sm} is a partition of M, then by construction � is a total
preorder in M. Moreover, since S0 = [H], it follows that � is faithful wrt H .
Hence to conclude the proof of the theorem we need to show that� satisfies (Q1),
(Q2), and (H�).

For (Q1), consider any two worldsw1, w2 such that Diff(H,w1) ⊂ Diff(H,w2).
Then clearly, |∆(H,w1)| < |∆(H,w2)|. Define w3 to be the world that agrees
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with w2 in all variables in Diff(H,w1), and it agrees with w1 outside Diff(H,w1);
i.e. Diff(H,w1) ∩ w3 = Diff(H,w1) ∩ w2 and (P − Diff(H,w1)) ∩ w3 = (P −
Diff(H,w1)) ∩ w1. Clearly w3 is a w2-cover of w1. Moreover by construction,
Diff(H,w3) = Diff(H,w1), and therefore |∆(H,w3)| < |∆(H,w2)|. Conse-
quently w3 � w2. Let Si and Sj be the cells that the two worlds w3 and w2

respectively belong. Since w3 � w2 it follows that i < j. Hence w3 ≺ w2 as
desired.

For (Q2), let w1, w2 be two internal H-duals. It suffices to show that both
worlds belong to the same cell. Assume towards contradiction that w1 ∈ Si,
w2 ∈ Sj and i 6= j. Moreover, without loss of generality, assume that i < j.
Then w1, w2 ∈ (P −

⋃i−1
k=0 Sk). Moreover, since w2 6∈ Si it follows that there is

a w3 ∈ (P −
⋃i−1
k=0 Sk) such that w3 � w2. Notice however that since w2 and

w1 are internal H-duals, from the definition of� it follows that w3 � w1. This
however contradicts our assumption that w1 ∈ Si. Hence w1 and w2 belong to the
same cell and therefore (Q2) is satisfied.

Finally for (H�), consider any two worlds w1, w2 such that w1 ≈ w2. Then
clearly, by the construction of �, w1 6� w2 and w2 6� w1. From the definition of
� this entails that w1 and w2 are internal H-duals, or equivalently, Diff(H,w1) =
Diff(H,w2) and Diff(H,w1) ∩ Diff(w1, w2) = ∅.

Define w = w1 ∩ w2. Clearly, Diff(H,w1) ⊆ Diff(H,w), and Diff(H,w1) ∩
Diff(w1, w) = ∅. Next we show that it is also the case that Diff(H,w)⊆Diff(H,w1).

Since w1 and w2 agree with H outside Diff(H,w1), it follows that there exist
worlds w′1, w

′
2 ∈ [H] such that, w′1 agrees with w1 outside Diff(H,w1), and w′2

agrees with w2 outside Diff(H,w1); i.e. w′1 ∩ (P − Diff(H,w1)) = w1 ∩ (P −
Diff(H,w1)), and w′2∩(P−Diff(H,w1)) = w2∩(P−Diff(H,w1)). Consequently,
(w′1 ∩ w′2) ∩ (P − Diff(H,w1)) = (w1 ∩ w2) ∩ (P − Diff(H,w1)) = w ∩ (P −
Diff(H,w1)). Moreover observe that, sinceH is Horn, its models are closed under
intersection, and therefore w′1 ∩ w′2 ∈ [H]. Hence we have shown that there is a
H-world, namely w′1∩w′2, that agrees with w on all variables outside Diff(H,w1).
Clearly then Diff(H,w) ⊆ Diff(H,w1).

Combining the above we have that Diff(H,w1) = Diff(H,w), and moreover
Diff(H,w1) ∩ Diff(w1, w) = ∅. By the construction of � we then derive that
w1 ≈ w. 2

We conclude this section with a note on relevance and iterated revision. It was
shown in [24] that the DP postulates contradict Parikh’s axiom for relevance. It
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may therefore be surprising at first that Horn revision is consistent with both. On
reflection thought the reader will realise that the results herein guarantee only that
Horn revision is consistent with each of the two, not with their conjunction.

8. Specific Horn Revision Operators

One of the main reasons for studying belief revision in a Horn setting is be-
cause of the attractive computational properties of Horn logic: Horn satisfiability
is decidable in linear time [13]. In this section, we take advantage of this feature
of Horn logic, and develop two specific Horn revision operators, called basic and
canonical revision, which also have polynomial time complexity; in particular,
O(n) and O(n2 logn) respectively.

First however, let us examine two of the most popular revision operators in
the classical AGM setting, namely the ones introduced by Dalal [7] and Satoh
[27]. It turns out that neither of these two operators can be applied directly in
a Horn setting; nevertheless, they provide a guiding intuition for developing our
own Horn revision functions.

Recall that Dalal and Satoh both define belief revision in terms of specific
preorders on possible worlds, which we denote �D and �S respectively. In par-
ticular, for any two worlds w and w′ the difference between w and w′, denoted
Diff(w,w′), is defined as the set of propositional variables that have different truth
values in the two worlds; in symbols,

Diff(w,w′) = (w − w′) ∪ (w′ − w).

Given a theory H , Dalal defines the faithful ranking associated with H as
follows:

w �D w1 iff there is aw′ ∈ [H] such that, |Diff(w′, w)| ≤ |Diff(w′1, w1)|,
for all w′1 ∈ [H].

In the above definition, |S| denotes the cardinality of a set S. Satoh’s definition is
very similar to Dalal’s, except that instead of cardinality, Satoh uses set inclusion:

w �S w1 iff there is a w′ ∈ [H] such that for all w′1 ∈ [H], if
Diff(w′1, w1) ⊆ Diff(w′, w) then Diff(w′, w) ⊆ Diff(w′1, w1).

34



Proposition 4. There exist Horn theories H for which neither Dalal’s preorder
�D nor Satoh’s preorder �S are Horn compliant.

Proof. Assume that the underlying propositional language is that built from
the propositional variables p, q. DefineH to be the Horn theoryH = CnH({p, q}).
Then both Dalal and Satoh, assign the following preorder � to H: pq ≺ pq ≈
pq ≺ pq. Notice however that the worlds pq and pq violate condition (H�), and
therefore � is not Horn compliant. 2

In the classical AGM framework, Dalal’s and Satoh’s operators can be viewed
as “off-the-shelf” domain independent revision functions that can be used when
no information is available about the relative plausibility of possible worlds. In
particular, in the absence of any other information, both Dalal and Satoh assume
that the plausibility of a possible world w, is defined in terms of the truth values
of the atoms in w, and their relation with the corresponding values at the initial
belief set. Although, as shown above, Dalal’s and Satoh’s operators can not be
applied directly in a Horn setting, their intuition of an atom-based plausibility is
used below to develop our own operators for Horn revision.

8.1. Basic Horn Revision

Like Dalal and Satoh, we define basic Horn revision in terms of preorders on
possible worlds (one per Horn belief set). In particular, let H be a belief set. We
define the basic Horn ranking associated with H , denoted �, as follows:

w � w′ iff either w ∈ [H] or w,w′ 6∈ [H] and |w| ≤ |w′|.

This ordering reflects an intuition deriving from the logic programming commu-
nity, that an atom is false unless it is (depending on the underlying approach)
“required” to be true. Here we give preference to worlds with fewer true atomic
propositions. We will show that � is a total preorder, faithful with respect to
H , and also Horn compliant. First however, let us familiarize ourselves with the
definition of � by considering a specific example.

Suppose that the underlying language LH is built from the propositional vari-
ables p, q, r and that the initial belief set is H = Cn(p ∧ (q ∨ r)). The worlds in
[H], namely, pqr, pqr, and pqr, will be placed in the beginning of the preorder �;
the rest will be ranked according to the number of atoms satisfied by each world:
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pqr
pqr pqr

pqr � � � pqr
pqr pqr

pqr

Theorem 6. Let H be a Horn belief set, and let � be the basic Horn ranking
associated with H . Then � is a total preorder, faithful with respect to H , and
Horn compliant.

Proof. By definition, � is clearly reflexive. For transitivity, let w0, w1, and w2

be any three worlds such that w0 � w1 and w1 � w2. If w0 ∈ [H], then clearly
w0 � w2. Assume therefore that w0 6∈ [H]. Then w0 � w1 entails w1 6∈ [H], and
|w0| ≤ |w1|. Similarly, from w1 6∈ [H] and w1 � w2, we derive that w2 6∈ [H],
and |w1| ≤ |w2|. Hence |w0| ≤ |w2| and w0, w2 6∈ [H]. Consequently w0 � w2 as
desired.

For totality, let w0 and w1 be any two worlds. If either of them is in [H], then
clearly the two worlds are comparable with respect to �. Assume therefore that
neither of them are members of [H]. If |w0| ≤ |w1| then w0 � w1; otherwise
w1 � w0. In either case the two worlds are comparable with respect to � and
hence � is total.

Faithfulness with respect to H follows immediately from the definition of �.
Hence to complete the proof we need to show that� is Horn compliant. We do so
by proving that (H�) is satisfied. Consider therefore any two worlds w,w′ such
that w ≈ w′. We will show that (w∩w′) � w. If w∩w′ ∈ [H] this is clearly true.
Assume therefore that w ∩ w′ 6∈ [H]. Then, since H is Horn, not both w and w′

can be members of [H]. Since one of w,w′ is not in [H], from w ≈ w′ we derive
that neither of the two worlds belong to [H]. Moreover, clearly, |w ∩ w′| ≤ |w|.
Therefore, (w ∩ w′) � w as desired. 2

We define the basic Horn revision function ◦ to be the function induced from
the basic Horn ranking(s) � via Definition 2. Clearly, in view of Theorem 6, ◦
satisfies (H*1) – (H*8), (Acyc). Moreover, as we will show later in this section, ◦
has nice computational properties. It therefore seems that ◦ is the ideal “off-the-
shelf” Horn revision operator: it is simple to understand, easy to compute (see
below), and has all the right theoretical properties. There is however one feature
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of ◦ that may be undesirable in some cases: whenever the new information µ is
inconsistent with the initial belief setH , the new belief setH ◦µ is complete. This
behaviour is a consequence of the following result:

Proposition 5. Let µ be a consistent Horn formula, and let wµ be the world wµ =
{pi ∈ P | µ ` pi}. Then wµ ∈ [µ], and moreover, every world in [µ] is a superset
of wµ.

Proof. We show that wµ ∈ [µ] by showing that wµ satisfies every clause of µ.
Let cj be an arbitrary clause of µ, where a clause is represented as a set of literals.
If wµ ∩ cj 6= ∅ or if cj is a singleton, then clearly wµ |= cj . 13 Assume therefore
that cj is not a singleton and moreover wµ ∩ cj = ∅. We distinguish between two
cases depending on whether cj is a positive or negative Horn clause.14 Assume
first that cj is a positive Horn clause. Then for some atoms pj , pk1 , . . . , pkm ∈ P ,
cj = {pj,¬pk1 , . . .¬pkm}. Notice that if all of the atoms pk1 , . . . , pkm belong towµ,
then µ ` pj , and consequently, pj ∈ wµ. This however contradicts our assumption
wµ ∩ cj = ∅. Hence, at least one of the atoms pk1 , . . . , pkm , say the atom pkr , does
not belong to wµ. Consequently, wµ |= ¬pkr , and therefore wµ |= cj .

Next assume that cj is a negative Horn clause; i.e., for some atoms pk1 , . . . ,
pkm ∈ P , cj = {¬pk1 , . . ., ¬pkm}. Since µ is consistent, not all of the atoms
pk1 , . . . , pkm belong to wµ. Therefore one of these atoms, call it pkr , is such that
wµ |= ¬pkr . Consequently, once again, wµ |= cj . Since cj was chosen as an
arbitrary clause of µ, we derive that wµ |= µ as desired.

Finally, for the second part of the result, let w′ be any world in [µ]. We will
show that wµ ⊆ w′. Let pi be any atom in wµ. By construction, µ ` pi. Hence,
since w′ |= µ it follows that w′ |= pi, or equivalently, pi ∈ w′. Consequently,
wµ ⊆ w′ as desired. 2

An immediate consequence of the above result is that, for any consistent Horn
formula µ, there is only one smallest µ-world (in terms of cardinality); namely
the world wµ as defined in Proposition 5. Consequently, given the definition of

13If cj is a singleton, then for some atom pj ∈ P , either cj = {pj} or cj = {¬pj}. In the first
case, pj ∈ wµ, and trivially wµ |= cj . In the second case, since µ is consistent, pj 6∈ wµ, and
therefore, once again, wµ |= cj .

14A Horn clause is positive if it contains a positive (unnegated) atom. If all literals in a Horn
clause are negated atoms then the clause is called negative.
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the basic ranking � associated with a Horn belief set H , if H + µ ` ⊥, then
min([µ],�) is a singleton. Clearly too, this will be the same as the minimal µ-
model. Therefore,

Corollary 2. Let H be a Horn belief set and µ be a Horn formula. If H +µ ` ⊥,
then

1. H ◦ µ is complete.15

2. H ◦ µ is equivalent to the minimal µ-model

As mentioned earlier, these features of basic Horn revision could be unde-
sirable in many situations. In fact, this is the main reason for introducing an
alternative Horn revision operator in the next section. Nevertheless, in situations
where completeness can be tolerated, basic Horn revision can be computed in
polynomial, in fact linear time. Let φ, µ be Horn formulas and let n be the size of
both these formulas. Moreover, assume that P = {p1, . . . , pm} are the atoms that
appear in φ, µ. Below is an algorithm for computing Cn(φ) ◦ µ in time O(n).

Algorithm A1

Input: Horn formulas φ, µ
Output: A Horn formula ψ such that Cn(ψ) = Cn(φ) ◦ µ.

if µ is unsatisfiable
then return µ

if φ ∧ µ is satisfiable
then return φ ∧ µ

wµ := {pi ∈ P | µ ` pi}
return wµ

Algorithm A1 first deals with the limiting cases. In particular, it checks if the
epistemic input µ is inconsistent, or consistent with the initial belief set Cn(φ), in
which case it returns respectively, µ and φ∧µ. If on the other hand µ is consistent

15It is worth noting that this maximalist behaviour of basic Horn revision is induced despite the
fact that the basic Horn ranking is not linear.
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and φ ∧ µ ` ⊥, then A1 computes the minimal µ-model, denoted wµ, and returns
wµ as the result. In view of Proposition 5, this is indeed correct.

In terms of computational complexity, in [13] it has been shown that Horn
satisfiability, as well as the computation of wµ (if µ is satisfiable), can be accom-
plished in linear time. Hence the overall time complexity of A1 is also linear.

8.2. Canonical Horn Revision

As discussed above, the “maximalist” behaviour of basic Horn revision (as
stated in Corollary 2), may not be a desirable feature in some cases. Therefore in
this section we introduce a second Horn revision operator, denoted ?, which we
call canonical Horn revision. Contrary to basic Horn revision, which is defined se-
mantically, canonical Horn revision is defined syntactically. In particular, starting
with a set of Horn clauses H0 representing the initial belief set, we shall define
a sequence of progressively weaker sets H1, H2, . . ., called fallbacks, through
which H ? µ is defined for any Horn formula µ.

To be precise, canonical Horn revision is not a single revision function, but
rather a whole family of functions parameterized by a total preorder on atoms. In
particular, let 5 be a total preorder on the set P of atoms. We define the subsets
P1, P2, . . . of P recursively as follows:

P1 = min(P ,5)
P2 = min(P − P1,5)

...
Pj+1 = min(P − (

⋃j
i=1 Pi),5)

...

Clearly, since P is finite, at some point the above sequence will reach the
empty set and will remain equal to the empty set from then onwards. Let us denote
by z the index of the last nonempty set in the above sequence. By construction,
P1, P2, . . ., Pz is a partition of P . Based on this partition, we define the fallback
sets H1, . . . , Hz (relative to 5) as follows:

Hi =

{
c ∪ (

i⋃
j=1

Pj) | c ∈ H0

}
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Some explanations are due. Firstly, for a set of atoms Pi, by Pi we denote
the set of negated atoms of Pi; i.e. Pi = {¬p | p ∈ Pi}. Secondly, all Hi in
the above sequence are sets of clauses, which in turn are represented as sets of
literals. Hence each Hi is constructed from H0 by adding the negated atoms of
the partitions P0, . . . Pi, to all clauses of H0. Notice that only negated atoms are
added to the clauses of Hi, and consequently, since H0 is Horn, so is Hi. It should
be clear from the construction that Hi ` Hj for all 0 ≤ i ≤ j ≤ z. Finally
notice that it is possible during the above construction that a clause degenerate to
a tautology; such clauses can be safely removed from the fallback sets.

An example will help us clarify the above observations. Assume that the lan-
guageLH is built from five atoms, i.e. P = {p, q, r, u, v}. Let the initial belief base
H0 be H0 = {{p, q}, {q, r}} and let the preorder 5 on atoms be u, v 5 p 5 q, r.
Then the sets Pi, Hi are defined as follows:

P1 = {u, v}
P2 = {p}
P3 = {q, r}

H0 = {{p, q}, {q, r}}

H1 = {{p, q, u, v}, {q, r, u, v}}

H2 = {{p, q, u, v, p}, {q, r, u, v, p}}

H3 = {{q, r, u, v, p}}

The notion of a fallback used for the setsHi is not new in the belief revision lit-
erature (see [21]). Loosely speaking, the intuition is that, besides the initial belief
base H0, there exists a sequence of progressively weaker belief bases H1, . . . , Hz,
to which the agent can fall back to if the new information µ contradictsH0. Herein
the fallback sets are induced by a preorder 5 on atoms which can be understood as
representing their a priori comparative plausibility: the earlier an atom p appears
in the preorder, the more plausible its negation is.16

16Observe that a single preorder on atoms suffices to construct the fallback sets for all initial
belief bases.
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The way fallback sets are used to define canonical Horn revision is quite sim-
ple. In particular, for any Horn sentence µ, let us denote by Hµ the first set in
the sequence H0, H1, . . . , Hz that is consistent with µ; if all sets in the sequence
are inconsistent with µ, we define Hµ to be the empty set. The canonical Horn
revision of Cn(H0) by µ (parameterized by 5) is defined as follows:17

Cn(H0) ? µ = Cn(Hµ ∪ µ)

The first thing we note about canonical Horn revision is that it doesn’t have
the maximalist attitude of basic Horn revision. Continuing with our previous ex-
ample, suppose that we revise the initial belief baseH0 = {{p, q}, {q, r}}with µ =
{{p}, {q}}. Then, Hµ = H1, and therefore the revised belief base is {{p, q, u, v},
{q, r, u, v}, {p}, {q}}, which clearly is not complete. The next result shows that
canonical Horn revision also has all the essential theoretical properties.

Theorem 7. Let 5 be a total preorder on the set of propositional variables P .
The canonical Horn revision function ?, parameterized by 5, satisfies (H*1) –
(H*8), and (Acyc).

Proof. Let H0 be a set of Horn clauses representing the initial belief set H
= Cn(H0), and let H1, . . ., Hz, be the fallback sets induced from 5 and H0. We
shall construct a total preorder on worlds�, which we will show to be faithful with
respect to H , Horn compliant, and such that min([µ],�) = [(Hµ ∪ µ)]. In view of
Theorem 3, the existence of such a preorder � suffices to prove Theorem 7. We
define the preorder � inM as follows:

w � w′ iff for every fallback set Hi, w′ ∈ [Hi] entails w ∈ [Hi].

Reflexivity and transitivity of� follow immediately from the definition. Hence
� is indeed a preorder. For totality, consider any two worlds w,w′, such that
w′ 6� w. We show that w � w′. Consider any fallback set Hj such that w′ ∈ Hj .

17There is some ambiguity in the use of µ in this equation. In particular, on the left side of the
equation, µ is treated as a (Horn) formula, whereas in the right hand side, it is treated as a set
of (Horn) clauses. We have allowed this dual representation of µ for the sake of readability; any
ambiguity is resolved from the context.
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From w′ 6� w we derive that there is a fallback set Hi such that w ∈ [Hi] and
w′ 6∈ [Hi]. Moreover, by construction, the fallback sets become progressively
weaker, and therefore, for any k,m, [Hk] ⊆ [Hm] iff k ≤ m. Hence, from
w′ 6∈ [Hi] and w′ ∈ [Hj] we derive that i ≤ j. This again, together with w ∈ [Hi],
entails that w ∈ [Hj]. Thus w � w′, and � is total.

For faithfulness, if H is inconsistent, then � is trivially faithful with respect
to H . Assume therefore that H is consistent and let w be any world in [H]. Then,
by construction, w ∈ [Hi], for all 0 ≤ i ≤ n. Hence w � w′ for all w′ ∈ M, and
therefore [H] ⊆ min(M,�). For the converse, let w be any world in min(M,�),
and let w′ be a world in [H]. Since w is minimal, it follows that w � w′. Hence,
by the definition of � and since w′ ∈ [H], we derive that w ∈ [H].

For Horn compliance, we will once again use its equivalent condition (H�).
Consider any two worldsw,w′ such thatw ≈ w′, and letw′′ be the world resulting
from their intersection; i.e. w′′ = w ∩ w′. Consider now any fallback set Hi such
that w ∈ [Hi]. Then from w ≈ w′, it follows that w′ ∈ [Hi], and consequently,
since by construction Hi is Horn, we derive that w′′ ∈ [Hi]. Thus w′′ � w as
desired.

Finally we show that for every Horn formula µ, min([µ],�) = [(Hµ ∪ µ)]. If
µ is inconsistent, then this is clearly true. Assume therefore that µ is consistent.
If Hµ = ∅ then no fallback set is consistent with µ, and consequently, by the
definition of �, all µ-worlds are equally ranked with respect to �, which again
entails that min([µ],�) = [µ] = [Hµ ∩ µ]. Assume therefore that Hµ 6= ∅.

Let w be any world in min([µ],�). Clearly, w ∈ [µ]. Moreover, by the
definition of �, and the minimality of w in [µ], it follows that w is a model of
every fallback set Hi such that [Hi] contains at least one µ-world w′. In other
words, w is a model of every fallback set consistent with µ, and consequently, w
is also a model ofHµ. Thusw ∈ [(Hµ∪µ)]. This proves min([µ],�)⊆ [(Hµ∪µ)].
For the converse, assume that w is a world in [(Hµ∪µ)]. Then w is a µ-world that
is also a model of Hµ. Consider now any world w′ ∈ [µ] and assume that w′ is a
model of some fallback set Hi; i.e. w′ ∈ [Hi]. Since Hµ is the first fallback set
consistent with µ, it follows thatHi doesn’t appear earlier thanHµ in the sequence
of fallback sets. Moreover, since fallback sets become progressively (logically)
weaker, and given that w ∈ [Hµ], it follows that w ∈ [Hi]. Consequently, w � w′.
Since w′ was chosen as an arbitrary µ-world we derive that w ∈ min([µ],�).
Hence [(Hµ ∪ µ)] ⊆ min([µ],�). 2
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We conclude this section with a discussion on the computational complexity
of canonical Horn revision. Assume that the set P of propositional variables has
m elements, and let k be the number of Horn clauses of the initial belief base H0.
Then, by construction, every fallback set Hi has no more than k clauses. Given
that each Horn clause can have up to m + 1 literals,18 it follows that each Hi

can be constructed in time O(k ∗ m). Hence a crude algorithm for computing
the canonical Horn revision of H0 by a Horn formula µ would be to construct
sequentially the fallback setsH1, H2, . . ., until we reach a setHµ that is consistent
with µ (or define Hµ = ∅ if all fallback sets are inconsistent with µ); then return
Hµ∪µ as the result of revision. Let us denote by n the length of the entire input.19

Since the construction of each fallback set, and testing its consistency with µ can
be performed in time O(n2), and moreover, there are at most m fallback sets,
the time complexity of the whole computation is no greater than O(n3). We can
improve on that if instead of searching sequentially for Hµ, we use binary search;
doing so reduces the complexity to O(n2 logn).

9. Discussion

In this paper, we have investigated belief revision in Horn clause theories.
We showed that AGM belief revision doesn’t immediately generalise to the Horn
case and that, in the naı̈ve extension of AGM revision to Horn clause theories,
several problems arise. We address these issues by first restricting the semantic
construction involving faithful rankings to “well behaved” orderings, those that we
call Horn compliant. As well, we augment the revision postulates by an additional
postulate (Acyc).

Notably, these results represent an extension rather than a modification of the
AGM approach. That is, we have redefined (AGM-style) revision in the context
of a logic, Horn logic, that is weaker than propositional logic. Postulates consist
of (H*1) – (H*8) and (Acyc), while the construction is in terms of Horn compli-
ant faithful rankings. This however subsumes classical AGM revision: classical
propositional logic obviously is stronger than Horn logic. In classical proposi-
tional logic the notion corresponding to Horn compliance is trivial, since (over a

18The only case where Horn clauses have m+ 1 literals are tautologies. All other Horn clauses
have up to m literals.

19In this case, the input includes the initial belief base H0, the new information µ, as well as the
preorder on atoms 5.
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finite alphabet) for any formula φ of propositional logic, min([φ],�) is definable
via a formula of propositional logic. On the postulational side, as we showed,
(Acyc) is derivable from the other postulates in the context of classical proposi-
tional logic. What this means, in other words, is that if one takes the approach
developed herein, but replaces Horn logic by classical propositional logic, one
ends up with the standard AGM approach.

We also showed that Horn revision is compatible with work in iterated revision
and work concerning relevance in revision. We also considered specific revision
operators: while the analogues of Dalah- and Satoh-style revision are incompat-
ible with Horn revision, we proposed two specific revision operators, both with
good complexity characteristics.

These results suggest several (in our opinion) very interesting directions for
future work. First, we argued that AGM revision can be extended by weakening
the underlying logic to that of Horn logic. This raises the issue of whether the
overall framework can be generalised to subsume other weakened inference rela-
tions, while maintaining the overall AGM character as reflected in the standard
AGM postulates.

The broader area of belief change in Horn theories is in the process of being
mapped out. Other research has characterized Horn contraction, while the present
paper has addressed revision. However, with the exception of [32], which con-
siders the definition of Horn revision in terms of contraction, there has been no
work that we are aware of in linking the areas of Horn contraction and revision.
Moreover, the constructions in Horn contraction have focussed on the standard
contraction constructions of remainder sets and epistemic entrenchment, while
the present work has used the standard revision construction of a faithful rank-
ing. Hence there is also a disconnect in the underlying formal characterizations.
Consequently, research on linking Horn contraction and revision would help shed
further light on the foundations of belief change.

Last, there is burgeoning interest in addressing belief change in description
logics (see [26] for instance) or in analogous areas such as ontology evolution.
Given that a Horn clause may also find interpretation as a subsumption, by map-
ping a rule p→ q to a subsumption of the form P v Q, the present approach may
also shed light on approaches to revision in description logics.
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